Exercises

AM 0219: Nonlinear Dynamical Systems

Bernold Fiedler, Stefan Liebscher due date: Mon, Sep 20, 2004

Exercise 1: Consider a flow $\varphi(t,x) = \varphi_t(x)$ on the real axis, $x \in \mathbb{R}$.

(i) Prove or disprove: every perodic orbit is an equilibrium, i.e.

$$\forall x_0 \in \mathbb{R} \left(\exists p > 0 : \varphi(p, x_0) = x_0 \implies \forall t \in \mathbb{R} : \varphi(t, x_0) = x_0 \right)$$

(ii) What are possible α -limits and ω -limits of an orbit of φ ? (Consider bounded and unbounded orbits.)

Exercise 2: Consider a flow φ on \mathbb{R}^n , $n \geq 2$. The orbit $\varphi_t(x_0)$ of x_0 is assumed to have arbitrarily small periods, i.e.

$$\forall \varepsilon > 0 \ \exists \ 0$$

Prove: x_0 is an equilibrium.

Exercise 3: Let φ be a flow on $X = \mathbb{R}^n$. Sets of the form

$$\gamma(x_0) \ = \ \{ \ (t, \varphi(t, x_0)) \ : \ t \in \mathbb{R} \ \} \ \subset \ \mathbb{R} \times X$$

are called solution curves. Define the time shift S_{ϑ} on the extended phase space $\mathbb{R} \times X$ by

$$S_{\vartheta} : \mathbb{R} \times X \to \mathbb{R} \times X, \qquad (t, x) \mapsto (t + \vartheta, x).$$

- (i) Prove: the shift S_{ϑ} maps solution curves onto solution curves, for any fixed ϑ .
- (ii) Which solution curves remain fixed under a particular S_{ϑ} ? Which solution curves remain fixed under all S_{ϑ} ?

Exercise 4: The flow $\varphi: \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$ of the mathematical pendulum corresponds to the vector field

$$\left(\begin{array}{c} \dot{x} \\ \dot{v} \end{array}\right) = \left(\begin{array}{c} v \\ -\sin x \end{array}\right).$$

Prove: the flow φ is equivariant under translations by 2π , i.e.

$$\varphi\left(t, \left(\begin{array}{c} x \\ v \end{array}\right) + \left(\begin{array}{c} 2\pi \\ 0 \end{array}\right)\right) = \varphi\left(t, \left(\begin{array}{c} x \\ v \end{array}\right)\right) + \left(\begin{array}{c} 2\pi \\ 0 \end{array}\right), \quad \text{for all } t, x, v.$$

Hint: You may use the uniqueness of the solution of the initial-value problem without proof.