## Exercises AM 0219: Nonlinear Dynamical Systems Bernold Fiedler, Stefan Liebscher due date: Mon, Sep 27, 2004

**Exercise 5:** The vector field  $F : \mathbb{R}^2 \to \mathbb{R}^2$  is defined by

$$\dot{x} = \left(\begin{array}{cc} a & -b \\ b & a \end{array}\right) x,$$

with  $a, b \in \mathbb{R}$ . Transform this linear differential equation into polar coordinates:

$$x = \left(\begin{array}{c} r\cos\phi\\ r\sin\phi \end{array}\right),$$

with r > 0,  $\phi \in \mathbb{R}/2\pi\mathbb{Z}$ . Choose  $b \neq 0$  arbitrarily and sketch phase portraits in  $(r, \phi)$ coordinates and in x-coordinates for a < 0, a = 0, a > 0.

**Exercise 6:** The map

$$\Phi_t(x_1, x_2) = (x_1 + t, x_2 + \sigma t), \qquad \sigma \in \mathbb{R},$$

with

$$\Phi_t(x_1+k, x_2+n) = \Phi_t(x_1, x_2), \qquad \forall k, n \in \mathbb{Z},$$

defines a flow on the 2-torus  $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ . Let  $\sigma$  be rational. Describe typical trajectories as well as their  $\alpha$ - and  $\omega$ -limits.

Voluntary addition: What happens for irrational  $\sigma$ ?

**Exercise 7:** Consider a periodic orbit  $\Gamma$  of a flow  $\varphi$  in  $X = \mathbb{R}^n$  and a neighborhood U of  $\Gamma$  in X such that each trajectory  $\gamma(x_0), x_0 \in U$ , converges to  $\Gamma$  as  $t \to \infty$ .

Prove or disprove: Every first integral of  $\varphi$  is constant in U.



**Exercise 8:** [see Arnol'd, 2.4.5] Determine all  $k \in \mathbb{R}$  such that the system

$$\begin{array}{rcl} \dot{x_1} &=& x_1 \\ \dot{x_2} &=& k x_2 \end{array}$$

possesses a non-constant first integral for  $(x_1, x_2) \in \mathbb{R}^2$ .