Exercises

AM 0219: Nonlinear Dynamical Systems

Bernold Fiedler, Stefan Liebscher due date: Mon, Oct 25, 2004

Exercise 21: Consider the Banach space BC^1 of continuously differentiable vector fields $f: X \to X = \mathbb{R}^n$ with

$$||f||_{BC^1} := \sup_{x \in X} (|f(x)| + |f'(x)|) < \infty.$$

Let f,g be vector fields in BC^1 and x(f,t) denote the solution at time t of the differential equation

$$\dot{x}(t) = f(x(t)), \qquad x(0) = x_0.$$

Is the map

$$x(t,\cdot): BC^1 \to X, \qquad f \mapsto x(t,f),$$

differentiable with respect to $f \in BC^1$, for fixed t? If so then which differential equation is solved by the variation $v(t) := D_f x(t, f)g$?

Exercise 22: Find a counterexample to the following claim:

$$e^A e^B = e^B e^A$$
,

for all real (2×2) -matrices A, B.

Exercise 23: Calculate the Picard iterates for the equation

$$\dot{x}(t) = Ax(t), \quad x \in \mathbb{R}^n, A \in \mathbb{R}^{n \times n},$$

 $x(0) = x_0,$

explicitly. The initial function is $x^0(t) \equiv x_0$. On which interval does the iteration converge?

Exercise 24: Let $A = (a_{ij})_{1 \le i,j \le n}$ be a real $(n \times n)$ -matrix. Prove: The coefficients of the matrix e^{At} are non-negative for all $t \ge 0$ if, and only if, $a_{ij} \ge 0$ for all $i \ne j$.

Hint: It suffices to consider the case $a_{ij} \geq 0$ for all i, j. (Why?)