Exercises

AM 0219: Nonlinear Dynamical Systems

Bernold Fiedler, Stefan Liebscher due date: Mon, Nov 22, 2004

Exercise 37: Let $A \subseteq B \subseteq X = \mathbb{R}^N$ be sets and φ_t a flow on X. The set A is called *chain-recurrent* with respect to B if for every $y_0 \in A$ and every $\varepsilon > 0$, T > 0 there exists a positive number $n \in \mathbb{N}$, a sequence of times $t_0, \ldots, t_{n-1} \geq T$, and points $y_1, \ldots, y_{n-1} \in B$ such that

$$\operatorname{dist}(\varphi_{t_i}(y_i), y_{i+1}) < \varepsilon,$$
 $i = 0, \dots, n-1 \pmod{n}$, i.e. $y_n := y_0$.

The set A is called *recurrent*, if we can chose chains of length n=1 for all points, i.e. if $y_0 \in \omega(y_0)$ for all $y_0 \in A$.

Prove: For any $x_0 \in X$, the ω -limit $\omega(x_0)$ is chain-recurrent with respect to X, but it is not necessarily recurrent.

Free extra: Let the trajectory $\varphi_t(x_0)$ be bounded. Prove or disprove: The ω -limit $\omega(x_0)$ is chain-recurrent with respect to itself?

Exercise 38: Consider the autonomous differential equation

$$\dot{x} = f(x), \quad x \in \mathbb{R}^N$$

with Lipschitz-continuous f. Suppose that all $x \in \mathbb{R}^N$ satisfy the inequality

$$(*)$$
 $f(x)^T x \ge ||x||_{\mathbb{R}^N}^3.$

Prove: The maximal existence time $t_+(x_0)$ of the solution x(t) is bounded, for every non-zero initial condition $x_0 \neq 0$.

Free extra: Is x = 0 automatically an equilibrium if (*) is satisfied?

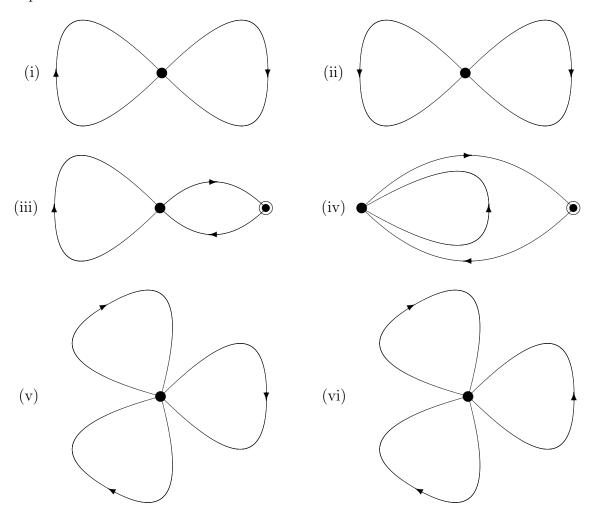
Exercise 39: Choose at least one variant:

- (A) In a bounded planar classroom, a professor chases a smart student. Both run at constant velocity 1. Can the professor reach the student?
- (B) The student runs along a circle, with velocity 1. The professor starts at the center and keeps running towards the momentary position of the student, at velocity p < 1. What is the professor's ω -limit set? Is the ω -limit set stable? What happens for p = 1, p > 1?

Hint (B): Useful coordinates are the angle between origin and professor, as seen from the student, and the distance between student and professor.

Free extra: Chase the professor.

Exercise 40: Which of the following sets are possible ω -limits of a trajectory of some planar flow? Which of the sets cannot occur as ω -limits? Justify your claims, without providing explicit vector fields.



Simple discs \bullet denote equilibria (of any type) and discs with a circle \bullet denote hyperbolic saddles.