Exercises **AM 0219: Nonlinear Dynamical Systems** Bernold Fiedler, Stefan Liebscher **due date: Mon, Nov 29, 2004**

Exercise 41: Let $X \subset \mathbb{R}^2$ be a circular disc with ℓ disjoint circular holes and f a continuously differentiable vector field on X with div f > 0.

Prove: the corresponding flow contains at most ℓ periodic orbits in X.

Exercise 42: Consider the differential equation

$$\dot{x} = y,$$

 $\dot{y} = (1 - x^2 - y^2)y - x.$

Prove: there exists a *unique* periodic orbit.

Exercise 43: Let x = 0 be an *isolated* equilibrium of a flow f in \mathbb{R}^2 . Prove:

- (i) x = 0 is stable but not an attractor if, and only if, every neighborhood of x = 0 contains (at least) one periodic orbit (with positive minimal period).
- (ii) If there exists a C^2 Lyapunov function V with $\nabla V(0) = 0$ and strictly indefinite HESSIAN matrix $\nabla^2 V(0)$ then x = 0 is unstable.

Exercise 44: Prove or disprove the theorem of POINCARÉ & BENDIXSON for flows on

- (i) the sphere S^2 ,
- (ii) the torus T^2 .