Exercises

AM 0220: Nonlinear Dynamical Systems

Bernold Fiedler, Stefan Liebscher due date: Mon, Apr 04, 2005

Problem 21: [Proof of hyperbolic horseshoe] Consider a C^1 -iteration Φ on the square Q satisfying the assumptions of the theorem on the C^1 -horseshoe. In particular, this includes a positive parameter $\mu < 1/2$ and forward/backward invariant cones $S^+ = \{(\xi, \eta) : |\eta| \le \mu |\xi|\}$, $S^- = \{(\xi, \eta) : |\xi| \le \mu |\eta|\}$,

$$D\Phi(p) S^+ \subset \text{int } S^+ \cup \{0\}, \qquad D\Phi^{-1}(p) S^- \subset \text{int } S^- \cup \{0\},$$

for each $p \in \bigcup_{a \in A} V_a$, with the expansion/contraction properties

$$|\xi_1| \ge \mu^{-1}|\xi|$$
 for all $(\xi, \eta) \in S^+$,
 $|\eta_1| \le \mu|\eta|$ for all $(\xi_1, \eta_1) \in S^-$,

with $\binom{\xi_1}{\eta_1} = D\Phi(p) \binom{\xi}{\eta}$. Thus there exists a horseshoe on some invariant set $I \subset Q$. Assume additionally

$$\mu^2 < \inf_{p \in I} |\det D\Phi(p)|$$
 and $\mu^2 < \inf_{p \in I} |\det D\Phi^{-1}(p)|$.

Prove: there exists a unique hyperbolic structure on I.

Hint: Consider line bundles $L^{\pm}(p)$ in S^{\pm} on I, say given by $\eta = \alpha^{+}(p)\xi$ and $\xi = \alpha^{-}(p)\eta$ with $|\alpha^{\pm}| \leq \mu$. Then prove that the action of $D\Phi^{\pm 1}$ on L^{\pm} is a contraction.

Problem 22: Consider the iteration on the 2-torus $T = (\mathbb{R}/\mathbb{Z})^2$ defined by the matrix

$$B = \left(\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array}\right).$$

Find a horseshoe for a suitable iterate B^k , k > 0.

Hint: Identify the torus with the unit square centered at (0,0) and investigate the images of a parallelogram parallel to the eigenvectors of B.

Problem 23: We want to "rescue" the Poincaré-Bendixson theorem for differential equations in \mathbb{R}^3 . Thus we allow three possibilities for the ω -limit of a point x:

- (i) an invariant torus,
- (ii) a periodic orbit,
- (iii) $\alpha(y)$ and $\omega(y)$ contain only equilibria for each $y \in \omega(x)$.

Why is this variant still wrong? (Find a counterexample.)

Problem 24: Consider the Hénon map

$$\begin{array}{rcl} x_{j+1} & = & 1 - \alpha x_j^2 + \beta y_j, \\ y_{j+1} & = & x_j. \end{array}$$

Find a horseshoe for $1 \ll \alpha$ and $0 < \beta \ll 1$.

Hint:
$$Q = [-0.1, 0.1] \times [-1, 1]$$
.