Übungen

Partielle Differentialgleichungen II

Jörg Härterich, Karsten Matthies

Abgabe: Mittwoch, den 21.4.2004, in der Vorlesung

Aufgabe 1: Definiere Sobolevräume H_{per}^k periodischer Funktionen in \mathbb{R} mit Periode 2π für $k \in \mathbb{N}$. Charakterisiere sie mittels Fourierreihen. Wie hängen Sobolevräume periodischer Funktionen mit den Sobolevräumen $H^k((0, 2\pi))$ zusammen?

Hinweis: Die Fourierreihe zu $f \in L^2(0, 2\pi)$ konvergiert gleichmässig, wenn $f' \in L^2(0, 2\pi)$ und zusätzlich $f(0) = f(2\pi)$.

Aufgabe 2: Sei $u \in H^1(\mathbb{R})$, zeige die Funktion $x \mapsto (u(x+h) - u(x))/h$ konvergiert für $h \to 0$ gegen u' im Sinne der L^2 -Konvergenz, d.h.

$$\lim_{h \to 0} \|\frac{u(.+h) - u(.)}{h} - u'(.)\|_{L^2} = 0.$$

Hinweis: Zeige die Aussage erst für $u \in C_c^{\infty}(\mathbb{R})$.

Aufgabe 3: Seien $u, v \in H^1(\mathbb{R})$. Zeige, dass das Produkt uv ebenfalls in $H^1(\mathbb{R})$ liegt. Hinweis: Zeige zunächst für $u, v \in C_c^{\infty}(\mathbb{R})$

$$||uv||_{H^1} \le C||u||_{H^1}||v||_{H^1}.$$

Aufgabe 4: Faltung und Glättung in \mathbb{R} : Seien $k \in L^1(\mathbb{R})$ und $f \in L^p(\mathbb{R})$ mit $1 \le p < \infty$.

a) Zeige für

$$(k * f)(x) = \int_{\mathbb{R}} k(x - y) f(y) dy = \int_{\mathbb{R}} k(y) f(x - y) dy$$

gilt

$$||k * f||_{L^p} \le ||k||_{L^1} ||f||_{L^p}.$$

b) Sei $\eta \in C^{\infty}(\mathbb{R})$ gegeben mit

$$\eta(x) = 0$$
 für $|x| \ge 1$, $\eta(x) \ge 0$ für $x \in \mathbb{R}$, $\int_{\mathbb{R}} \eta(x) dx = 1$

Dann definiere $\eta_{\epsilon}(x) := \frac{1}{\epsilon} \eta(x/\epsilon)$ und

$$f_{\epsilon} = \eta_{\epsilon} * f.$$

Zeige $f_{\epsilon} \in C^{\infty}(\mathbb{R})$ und $f_{\epsilon} \to f$ in $L^{p}(\mathbb{R})$.