Übungen

Partielle Differentialgleichungen II

Jörg Härterich, Karsten Matthies

Abgabe: Mittwoch, den 05.05.2004, in der Vorlesung

Aufgabe 9: Sei X ein Banachraum und A der infinitesimale Generator einer stark stetigen Halbgruppe T(t) auf X mit $||T(t)|| \leq M$ für $t \geq 0$.

(i) Zeige die Identität

$$T(t)x - x = tAx + \int_0^t (t - s)T(s)A^2x \, ds \qquad \forall x \in \mathcal{D}(A^2)$$

(ii) Leite damit die Abschätzung

$$||Ax||^2 \le 4M^2 ||A^2x|| \cdot ||x||$$

her.

(iii) Wende die Ungleichung aus (ii) auf die Shift-Halbgruppe (T(t)f)(s):=f(t+s) auf dem Raum $X=BC^0_{unif}(\mathbb{R})$ an.

Aufgabe 10: Betrachte die Familie T(t), $t \geq 0$, von linearen Operatoren, die einer Funktion $u \in L^2_{per}$ (siehe Übungsaufgabe 1) mit Fourier-Reihe $u = \sum_{n \in \mathbb{Z}} c_n e^{inx}$ die Funktion

$$T(t)u = \sum_{n \in \mathbb{Z}} e^{-n^2 t} c_n e^{inx}$$

zuordnet.

Zeige, dass die T(t) eine stark stetige Halbgruppe auf L_{per}^2 bilden, bestimme deren infinitesimalen Generator A sowie den Definitionsbereich $\mathcal{D}(A)$.

Aufgabe 11: Sei X ein Banachraum und T(t) sei eine gleichmäßig beschränkte Halbgruppe, d.h. $\lim_{t\searrow 0} \|T(t) - Id\|_{\mathcal{L}(X)} = 0$. Zeige, dass der infinitesimale Generator A beschränkt ist, d.h. $A \in \mathcal{L}(X)$ und dass $\mathcal{D}(A) = X$.

Tipp: Benutze Aufgabe 5 sowie den Satz über die Neumann-Reihe, um zu zeigen, dass $\int_0^{\rho} T(s) ds$ für hinreichend kleines $\rho > 0$ invertierbar ist.

Aufgabe 12: Sei X ein Banachraum und T(t), $t \geq 0$ eine stark stetige Halbgruppe mit infinitesimalem Erzeuger A.

Zeige: Falls λ ein Eigenwert von A mit zugehöriger Eigenfunktion u_{λ} ist, dann gilt:

$$T(t)u_{\lambda}=e^{\lambda t}u_{\lambda}$$
 für alle $t\geq 0$.