11. Übungsblatt zur Variationsrechnung

B. Fiedler, J. Härterich

Abgabe am 7.7.2005 in der Vorlesung

Aufgabe 41: Sei H ein Hilbertraum und Γ eine Gruppe von linearen, isometrischen Abbildungen auf H, d.h.

$$(\gamma u, \gamma v)_H = (u, v)_H \quad \forall u, v \in H, \gamma \in \Gamma.$$

Sei $F \in C^1(H, \mathbb{R})$ ein Γ -invariantes Funktional, also

$$F(\gamma u) = F(u) \quad \forall u \in H, \ \gamma \in \Gamma.$$

Zeige, dass dann die Ableitung von F Γ -äquivariant ist, d.h.

$$F'(\gamma u) = \gamma F'(u) \quad \forall u \in H, \ \gamma \in \Gamma$$

und dass die Menge der kritischen Punkte invariant unter Γ ist.

Aufgabe 42: Sei nun $\Gamma \subset SO(n)$ und $\Omega \subset \mathbb{R}^n$ ein glatt berandetes, beschränktes Gebiet, das unter Γ invariant ist. Auf $X = H^{1,2}(\Omega)$ kann man durch

$$(\gamma u)(x) := u(\gamma^{-1}x), \qquad u \in X, \ \gamma \in \Gamma, \ x \in \Omega$$

ebenfalls eine Aktion der Gruppe Γ erklären. Verifiziere dies und zeige, dass das Funktional

$$\varphi(u) = \int_{\Omega} |\nabla u(x)|^2 + u(x) dx$$

invariant unter Γ ist.

Aufgabe 43: Zeige, dass der Operator

$$\varphi(u): H^{1,2}(\Omega) \to \mathbb{R},$$

definiert als

$$\varphi(u) \cdot v = \int_{\Omega} \left(F_u(x, u, \nabla u) \cdot v(x) + F_p(x, u, \nabla u) \cdot \nabla v(x) \right) dx$$

mit festem $u \in H^{1,2}(\Omega)$ beschränkt linear ist. Dabei sei Ω ein beschränktes Gebiet mit glattem Rand und die Funktion F(x, u, p) sei messbar in x, stetig differenzierbar in u und p und erfülle die Wachstumsvoraussetzungen aus Satz I.1.2 der Vorlesung.

Aufgabe 44: Sei $\Omega \subset \mathbb{R}^n$ mit $n \geq 3$ ein beschränktes Gebiet mit glattem Rand und

$$G: \Omega \times \mathbb{R} \times \mathbb{R}^n \rightarrow \mathbb{R}$$

 $(x, u, p) \mapsto G(x, u, p)$

sei messbar in x, stetig differenzierbar in u und p und erfülle die Abschätzung

$$|G(x,u,p)| \leq C \cdot \left(1 + |u|^{rac{n}{n-2}} + |p|
ight).$$

Zeige, dass dann für $u \in H^{1,2}(\Omega)$ die Abbildung

$$x\mapsto G(x,u(x),\nabla u(x))$$

in $L^2(\Omega)$ liegt.