5. Übungsblatt zur Variationsrechnung

B. Fiedler, J. Härterich

Abgabe am 26.05.2005 in der Vorlesung

Aufgabe 17: Zeige, dass man in einem Gefäß, das mit Öl und Essig gefüllt ist, sowohl das Öl- als auch das Essigvolumen durch eine "minimale" Trennfläche halbieren kann, oder, mathematisch formuliert:

Sei $\Omega \subseteq \mathbb{R}^3$ ein beschränktes Gebiet mit glattem Rand, so dass $\Omega_- := \Omega \cap \{(x_1, x_2, x_3) \in \mathbb{R}^3; x_3 < 0\}$ und $\Omega_+ := \Omega \cap \{(x_1, x_2, x_3) \in \mathbb{R}^3; x_3 > 0\}$ beide von positivem Lebesgue-Maß sind.

Zeige, dass es unter allen messbaren Teilmengen G von Ω mit $|G \cap \Omega_+| = \frac{1}{2}|\Omega_+|$ und $|G \cap \Omega_-| = \frac{1}{2}|\Omega_-|$ eine "minimale Trennfläche" gibt, also eine, für die

$$\varphi(G) := \int_{\Omega} |D \mathbf{1}_G|$$

minimal wird.

Aufgabe 18: In der Vorlesung wurden Funktionen beschränkter Variation auf dem Intervall [0, 1] definiert durch

$$BV([0,1]) := \{u \in L^1([0,1]; \mathbb{R}); \ \|u\|_{BV} := \|u\|_{L^1} + \int_0^1 |Du| \ dx < \infty\}.$$

Zeige, dass für

$$u \in NBV([0,1]) := \{u \in BV([0,1]); u \text{ ist stetig von links}\}$$

die Norm in BV([0,1])äquivalent ist zu

$$||u||_{\tilde{BV}} = |u(0)| + \sup \sum_{i} |u(t_{i+1}) - u(t_i)|,$$

wobei das Supremum über alle endlichen Partitionen $0 \le t_1 < t_2 < \ldots < t_n \le 1, n \in \mathbb{N}$ des Intervalls [0,1] zu nehmen ist.

Aufgabe 19: Sei

$$g(z) = e^{i\theta} \frac{z+a}{1+\bar{a}z}$$
 mit $a \in \mathbb{C}$, $|a| < 1$ und $\theta \in \mathbb{R}$

eine konforme Abbildung des Einheitskreises $\Omega = \{z \in \mathbb{C}; |z| \leq 1\} \subseteq \mathbb{C}$ in sich.

- (i) Drücke die Inverse g^{-1} von g in der Form $g^{-1}(z)=e^{i\psi}(z+b)/(1+\bar{b}z)$ mit geeignetem ψ und b aus.
- (ii) Zeige, dass g für $a \neq 0$ und $\theta \not\equiv 0 \pmod{2\pi}$, d.h. für $g(z) \not\equiv z$, höchstens zwei Fixpunkte besitzt.
- (iii) Zeige nun mit Hilfe der vorhergehenden Teilaufgaben, dass g schon durch die Bilder $w_i = g(z_i)$ dreier verschiedener Punkte z_1 , z_2 , z_3 eindeutig festgelegt ist.

Aufgabe 20: Betrachte wie oben eine konforme Abbildung $g(z) = e^{i\theta}(z+a)/(1+\bar{a}z)$ des Einheitskreises in sich.

Zeige, dass g sich als Verkettung

$$g = g_4 \circ g_3 \circ g_2 \circ g_1$$

schreiben lässt, wobei $g_1(z)=z+\frac{1}{\bar{a}}$ eine Translation, $g_2(z)=\frac{1}{z}$ eine Kreisspiegelung (Inversion am Kreis), $g_3(z)=z+c$ wieder eine Translation und $g_4(z)=\varrho e^{i\phi}z$ eine Drehstreckung ist.

Bestimme die Konstanten c, ϱ und ϕ . Wähle a nahe 1, z.B. a=0.95 und markiere im Einheitskreis Ω einen Kreis um a mit Radius |1-a|. Skizziere nun schrittweise das Bild von Ω und des eingezeichneten Kreises mit Hilfe der obigen Zerlegung (gerne auch mit MATHEMATICA, MATLAB etc.).

Freiwillige Aufgabe: Erzeuge mit Wasser, Spülmittel/Neutralseife und Draht experimentell Minimalflächen. Beschreibe Deine Beobachtungen!