9. Übungsblatt zur Variationsrechnung

B. Fiedler, J. Härterich

Abgabe am 23.06.2005 in der Vorlesung

Aufgabe 33: Sei Ω eine offene, beschränkte Menge in \mathbb{R}^n mit glattem Rand $\partial\Omega$, und

$$G:\overline{\Omega} imes\mathbb{R} o\mathbb{R}$$

eine Abbildung mit Ableitung $g(x, u) := G_u(x, u)$ in $C^0(\overline{\Omega} \times \mathbb{R})$ von superlinear beschränktem Wachstum, d.h.

$$|g(x,u)| \le C(1+|u|^s)$$

für ein s>1 (falls n<3, soll auch $s<\frac{n+2}{n-2}$ erfüllt sein), und gelte weiter für ein R>0 und ein $\mu>2$

$$0 < \mu G(x, u) \le u q(x, u)$$

für alle $|u| \geq R$ und $x \in \overline{\Omega}$.

Betrachte das Funktional

$$arphi(u) = \int_{\Omega} \left[rac{1}{2} |
abla u(x)|^2 - G(x,u(x))
ight] dx, \quad u \in X = H_0^{1,2}(\Omega).$$

Zeige, dass $\varphi \to -\infty$ für $|u|_X \to \infty$, gleichmäßig auf beliebigen endlichdimensionalen Teilräumen von X!

Freiwilliger Zusatz: Ist die Konvergenz auch gleichmäßig auf ganz X?

Aufgabe 34: Berechne $\deg(f,\Omega,0)$ durch Approximation mit Funktionen, für die 0 ein regulärer Wert ist,

- (i) für $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = (x, x^2 + y^2)$, $\Omega = (-1, 1)^2$,
- (ii) für $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = (xy, x^2 y^2)$, $\Omega = \{(x,y); x^2 + y^2 < 1\}$.

Aufgabe 35: Sei $\Omega \subset \mathbb{R}^n$ beschränkt, offen und ausserdem symmetrisch bezüglich 0, d.h. $x \in \Omega \Leftrightarrow -x \in \Omega$. Sei weiter $f \in C^0(\overline{\Omega}, \mathbb{R}^n)$ und $f(\partial\Omega) \subset \mathbb{R}^n \setminus \{0\}$.

- (i) Zeige, dass $\deg(f,\Omega,0)=0$ gilt, falls f gerade ist.
- (ii) Freiwilliger Zusatz: Zeige, dass $\deg(f,\Omega,0)$ ungerade ist, falls f ungerade und $0 \in \Omega$ ist.

Aufgabe 36: Sei $L_0^p := L^p([0,1], \mathbb{R}^{2N}) \cap \{\int_0^1 u = 0\}$, wie in der Aufgabe 32. Wir modifizieren nun den Operator

$$\begin{array}{cccc} K: & L^p_0 & \longrightarrow & L^p \\ & u & \longmapsto & \left(t \mapsto \int_0^t Ju(s)ds\right) \end{array}$$

aus der Aufgabe 32, um auch im Bild einen Mittelwert 0 zu erzielen:

$$\begin{array}{cccc} \tilde{K}: & L_0^p & \longrightarrow & L_0^p \\ & u & \longmapsto & Ku - \int_0^1 (Ku)(t) dt \end{array}$$

Berechne alle Eigenwerte $\lambda \neq 0$ und die dazugehörigen Eigenvektoren von \tilde{K} , d.h. $0 \neq u \in L^p_0$ mit $\tilde{K}u = \lambda u$.