FU BERLIN
SOMMERSEMESTER 2006

2. Übungsblatt zur Vorlesung Dynamische Systeme I

Abgabe am 11.05.2006 in der Vorlesung

AUFGABE 5:

Das Vektorfeld $F: \mathbb{R}^2 \to \mathbb{R}^2$ sei gegeben durch

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} x - y - (x^2 + y^2)x \\ x + y - (x^2 + y^2)y \end{pmatrix}.$$

Transformiere diese Differentialgleichung auf Polarkoordinaten

$$\left(\begin{array}{c} x \\ y \end{array}\right) \; = \; \left(\begin{array}{c} \varrho \cos \varphi \\ \varrho \sin \varphi \end{array}\right),$$

mit $\varrho > 0$ und $\varphi \in \mathbb{R}/2\pi\mathbb{Z}$. Skizziere das zugehörige Vektorfeld und das Phasenportrait jeweils in den Koordinaten (ϱ, φ) sowie (x, y).

AUFGABE 6:

Den 2-Torus $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ erhält man topologisch als Quotientenraum, indem man in \mathbb{R}^2 Punkte (x_1, x_2) und $(\tilde{x}_1, \tilde{x}_2)$ miteinander identifiziert, falls $x_1 - \tilde{x}_1$ und $x_2 - \tilde{x}_2$ beide ganzzahlig sind. Verifiziere zunächst, dass durch die Abbildung

$$\Phi_t(x_1, x_2) = (x_1 + \alpha t, x_2 + \beta t), \qquad \alpha, \beta \in \mathbb{R}$$

ein Fluss auf dem Torus definiert wird.

Sei nun β/α rational. Wie sehen dann typische Trajektorien aus? Beschreibe die ω -Limesmengen. Freiwilliger Zusatz: Was passiert, wenn β/α irrational ist?

AUFGABE 7:

Berechne e^{At} für die Matrix

$$A = \left(\begin{array}{cc} 0 & -\omega \\ \omega & 0 \end{array}\right)$$

mit $\omega > 0$ und $t \in \mathbb{R}$.

Löse damit die lineare Differentialgleichung

$$\dot{\mathbf{x}} = \left(\begin{array}{c} \dot{x}_1 \\ \dot{x}_1 \end{array}\right) = A\mathbf{x}$$

zu Anfangsbedingungen $x_1(0)=a_1, x_2(0)=a_2\in\mathbb{R}$. Zeichne

- (a) das zugehörige Phasenportrait,
- (b) die Graphen der Abbildungen $t \mapsto x_1(t)$ und $t \mapsto x_2(t)$ für Anfangsbedingungen $(a_1, a_2) \neq (0, 0)$ Deiner Wahl, und
- (c) eine typische Integralkurve im (x_1, x_2, t) -Diagramm.

Sei $X=\mathbb{R}^n$ und $\Phi:\mathbb{R} imes\mathbb{R} imes X\to X$ eine Evolution mit zugehörigem nicht-autonomem Vektorfeld

$$f(s,x) = D_t \Phi(t+s,s,x)|_{t=s}.$$

Zeige:

$$ilde{\Phi}: \mathbb{R} imes ilde{X}
ightarrow ilde{X} \ (t, (s, x))
ightharpoonup (t + s, \Phi(t + s, s, x)) \, .$$

ist ein Fluss auf dem $\mathit{erweiterten\ Phasenraum\ } \tilde{X} = \mathbb{R} \times X.$ Das zugehörige Vektorfeld auf \tilde{X} ist $\tilde{f}(s, x) = (1, f(s, x)).$