9. Übungsblatt zur Vorlesung Verzweigungstheorie

ABGABE AM 20.12.2006 IN DER VORLESUNG

AUFGABE 33:

Man stelle sich vor, dass man mit Hilfe eines numerischen Verfahrens einen Pfad von Gleichgewichtslösungen $(x_*(\rho), \lambda_*(\rho))$ der Differentialgleichung

$$\dot{x} = f(x, \lambda), \qquad x \in \mathbb{R}^3, \ \lambda \in \mathbb{R}$$

verfolgt. Um Hopf-Verzweigungen zu entdecken, muss man zunächst die Gleichgewichte finden, für die die Linearisierung $A(\rho) := D_x f((x_*(\rho), \lambda_*(\rho))$ rein imaginäre Eigenwerte hat.

Was machen die Koeffizienten des charakteristischen Polynoms der Linearisierung, wenn zwei Eigenwerte die imaginäre Achse kreuzen ?

Denke Dir eine Methode aus, um rein imaginäre Eigenwerte entlang dieses Zweigs (numerisch) zu erkennen, **ohne** alle Eigenwerte der Jacobi-Matrix zu berechnen.

AUFGABE 34 (SCHRIFTLICH):

Sei $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ zweimal stetig differenzierbar und $f(x,\lambda)$ habe eine Saddle-Node-Verzweigung in $x=0, \lambda=0$, d.h. es sei $f(0,0)=0, f_x(0,0)=0, f_\lambda(0,0)\neq 0$ und $f_{xx}(0,0)\neq 0$.

Sei $g \in C^2(\mathbb{R} \times \mathbb{R}, \mathbb{R})$ eine weitere Funktion. Zeige:

(i) Falls $||f - g||_{C^2}$ klein genug ist, dann hat auch g eine Saddle-Node-Verzweigung nahe $x = \lambda = 0$.

Es gibt g mit $\|f-g\|_{C^1}$ beliebig klein, so dass $g(x,\lambda)=0$ für gewisse Werte von λ mehr als zwei Lösungen hat.

AUFGABE 35 (SCHRIFTLICH):

Untersuche mit Hilfe einer Zentrumsmannigfaltigkeits-Reduktion in der Lorenz-Gleichung

$$\begin{array}{rcl} \dot{x} & = & \sigma(y-x) \\ \dot{y} & = & \rho x - y - xz \\ \dot{z} & = & xy - \beta z \end{array}$$

die Verzweigung des Gleichgewichts x=y=z=0 bei $\rho=1$ für feste Parameter $\beta=\frac{8}{3}$, $\sigma=10$.

AUFGABE 36 (HOPF-HOPF):

Betrachte die Differentialgleichung

$$\dot{x} = f(x, \mu), \qquad x \in \mathbb{R}^4, \ \mu = (\mu_1, \mu_2) \in \mathbb{R}^2.$$

Es sei f(0,0)=0 und die Linearisierung $D_x f(0,0)$ besitze zwei Paare einfacher, rein imaginärer Eigenwerte $\pm \omega_1 i, \pm \omega_2 i$, mit

$$k_1\omega_1 + k_2\omega_2 \neq 0$$
 für alle ganzen Zahlen k_1, k_2 mit $0 < |k_1| + |k_2| \leq 4$.

Bestimme für $\mu_1 = \mu_2 = 0$ die Normalform bis zur kubischen Ordnung.

Es empfiehlt sich, wie bei der Hopf-Verzweigung in komplexen Koordinaten zu arbeiten.

Nimm nun an, dass die Normalform-Koeffizienten von μ abhängen und entwickle in eine Taylor-Reihe bezüglich μ_1 und μ_2 . Gib eine abgeschnittene Normalform an, die nur Terme bis zur Ordnung $\mathcal{O}(\mu|w|,|w|^3)$ enthält.

Transformiere diese abgeschnittene Normalform auf Polarkoordinaten $(r_1, \phi_1, r_2, \phi_2)$.

Freiwillig: Untersuche mit Hilfe von DSTOOL die Dynamik der Differentialgleichungen für r_1 und r_2 zu betrachten.