2. Übungsblatt zur Vorlesung Mathematik für Geologen

ABGABE IM ÜBERNÄCHSTEN TUTORIUM AM 8. NOVEMBER

AUFGABE 4

Berechnen bzw. vereinfachen Sie ($p, s, t \neq 0, a, b > 0$):

$$27^{2/3} 64^{-1/6} (4^{-9/5})^{(\frac{1}{9} + \frac{1}{6})} \frac{s^3 t}{pst^4} \sqrt{ab^2} \sqrt[4]{a} \sqrt{a^3} \frac{1}{\sqrt{b}}$$

AUFGABE 5

Schreiben Sie mit bzw. ohne Summenzeichen:

$$2+3+4+\cdots+8$$
 $x+2x^2+3x^3+\cdots+9x^9$
$$\sum_{i=1}^4 x_i \qquad \sum_{k=4}^7 a_k b_{10-k}$$

AUFGABE 6

Für die Abhängigkeit der Wärmeproduktion W (in kJ pro Tag) vom Körpergewicht M (in kg) 1 kann bei Warmblütern in guter Näherung $W=b\cdot M^c$ angenommen werden. Bestimmen Sie die Parameter b und c mit Hilfe der M- und W-Werte eines Pferdes ($M=500,\ W=28\,000$) und eines Meerschweinchens ($M=0.5,\ W=175$). Was ergibt sich damit für einen Menschen von 70 kg Gewicht?

AUFGABE 7

Betrachten Sie die enzymatische Reaktion

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_3}{\rightleftharpoons} E + P,$$

in der E das Enzym, S das Substrat, ES der Enzymsubstratkomplex, P das Produkt der Umwandlung und k_i die Reaktionsgeschwindigkeitskonstanten bezeichnen. Bei konstanter gesamter Enzymkonzentration, d.h. $[E]+[ES]=[E_0]$, und unter der Gleichgewichtsannahme $k_1[E][S]=(k_2+k_3)[ES]$ ergibt sich für die Reaktionsgeschwindigkeit die *Michaelis-Menten-Gleichung*

$$v = v_{\text{max}} \frac{[S]}{[S] + K} \tag{1}$$

mit den Konstanten $v_{\text{max}} = k_3[E_0]$ und $K = (k_2 + k_3)/k_1$.

ii) Nehmen Sie die Koordinatentransformationen y=1/v und x=1/[S] vor, und zeigen Sie, dass (1) in die lineare *Lineweaver-Burk-Gleichung*

$$y = \frac{K}{v_{\text{max}}} x + \frac{1}{v_{\text{max}}} \tag{2}$$

übergeht. Was sind bei dieser Darstellung die Schnittpunkte mit den Achsen?

¹Präziser sollte man von der Körper*masse* statt vom Körper*gewicht* sprechen.

i) In einer Versuchsreihe mit Glutamat (S), Glutamat-Dehydrogenase (E) und 2-Oxoglutarat (P) wurden folgende Werte gemessen:

[S] in mol/dm³
$$3.33 \cdot 10^{-4}$$
 $6.66 \cdot 10^{-4}$ 10^{-3} $3.33 \cdot 10^{-3}$ 10^{-2} v in μ mol/min 0.023 0.037 0.047 0.073 0.089

Tragen Sie diese Werte in ein geeignetes Diagramm ein, und ermitteln Sie graphisch $v_{\,\mathrm{max}}$ und K.

Tutorien: Do: 12 - 14 Uhr, Hörsaal, Arnimalle 3 und Do 16 - 18 Uhr, Raum 31, Arnimallee 6.