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To study transcendentals, we need som

roblem originated, how it was refined oy

olution was such a grand achievement‘
the seventeenth century.

e baCkground
er the decades, an(zln wnere the

o | Why its res
€ start, ag did calculys itself i,

THE ALGEBRAIC AND THE TRANSCENDENTAL

It appears to have been Leibniz wh first used the
tal” in a mathematical classification scheme. Writin
invented differential calculus, Leibni, noted its appli
roots, and similar algebraic quantities, but thep adde
method also covers transcendental curves—those that cannot be redyceq
by algebraic computation or have ng Particular degree— 5 thus holds in
a most general way”[1]. Here Leibniz Wwanted to separate those entities

that were algebraic, and thus reasonably straightforward from those that
were intrinsically more sophisticated.

The distinction was refined b
Introductio, he listed the so-calle
traction, multiplication, divisio

term “transcenden~
g about hjs new|

cability 1o fractions
d, It is clear that our

y Euler in the eighteenh century. In his
d algebraic operations as “addition, sub-

D, raising to a power, and extraction of
roots,” as well as “the solution of equations.” Any other operations were

transcendental, such as those involving “exponentials, logarithms, and
others which integral calculus supplies in abundance” [2]. He even went
so far as to mention transcendental quantities and gave as an example “log-
arithms of numbers that are not powers of the base,” although he provid-
ed no airtight definition nor rigorous proof [3].

Our mathematical forebears had the right idea, even if they failed to
EXpress it precisely. To them it was evident that certain mathematical objects,
be they curves, functions, or numbers, were accessible via the fundamental
Operations of algebra, whereas others were sufficiently complicated to tran-
scend algebra altogether and thereby earn the name “transcendental. .

After contributions from such late eighteenth century mathematicians
as Legendre, an unambiguous definition appeared. A real nqmbAer was
$2id t0 be algebraic if it solved some polynomial equation with mtegei
coefficients, Thay s, x, is an algebraic number if there exists a 1.‘)01>’m’)1mla

00) = qxn 4 pyn-1 + "2+ 4+ gx+h, where a,b¢, .. 2 & and ‘arie
integers and gych that P(x,) = 0. For instance, v2 is ﬂlgebralcﬁbécafsseﬁ;z
asolution of X2~ 0, a quadratic equation with integer coefficients.

' : i _ 6yt — 103 +
%Dviously, the number 2 + /5 is algebraic for it solves x® = 6x* ~ 10x
2X2‘6OX+ 17 = 0.
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spective, an algebraic number is the

y = PO where P1s 2 polynomial with integer Coefficien,
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(see figur 1 oenerally all polynm-malsl whose coefh-cmnts are imegers\-

ratic. all cublﬁ"l_:f collection of their x-intercepts will be the Ko
infin

then the 1N .
pumbers. uestion arises: 1s there anythmg .els.e? To allow fo; "
An obvious 4 real number is transcendental if it is not algebraic A is
ossibility, we 3 ab sheer logic, fall into one category or the Other_' ny
real number muif»an};, rranscendentals? A piece of terminology, afte, all
But are ther existence. A mammalogist might just as we]] define .
does not guarantee it lives in water and to be transcendental if j; doea
f a transcendental dolphin is unambiguoys, bust

ic per x-inte
From a geomet! P Teept
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Szt?Here, the concept O
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at

he imagination? Might g]]
ell-defined figment of t gnt all thoge
numgerfc)bi.?n?;rcepts cover the line completely? If not, where shoyyg
(allgelofj< {or a number that is not the intercept of any polynomial equatioy
one

ionts?

1 mteger coefficients:

with Am; %rst step toward an answer, we note that a transcendental nyp.
s

ber must be irrational. For, if Xo = a/b is rational, then x, obviously satis-
ﬁZs the first-degree equation bx —a =0, whose coefficients b and —q are
integers. Indeed, the rationals are precisely those algebraic numbers satis-
i N y

fying linear equations with integer coefficients. . |
Of course, not every algebraic number is rational, as is clear from the

algebraic irrationals v2 and 2 + 3/5. Algebraic numbers thug represent a
generalization of the rationals in that we now drop the requirement tha[
they solve polynomials of the first degree (although we retain the restric-
tion that coefficients be integers).

y=PX

\ algebraic numbers \
— —>

Figure 8.1
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Transcendentals, if they exist, myg
¢ time of the Greeks, roots like /3 v,
iﬁe end of the ei‘ghteenth century, the irer:ilcjggh“in 10 be 'IMational, anq b
had been estabhshed, respectively, by Eyley in 1);3°f the Constang eand
(1728—1777) in 1768 [4]. But Pproving irrationalig 7 and Johany, Lambe:[t
proving transcendence. V1S alar easier gy than
As we noted, Euler conjectured that (e n
al, and Legendre believed that 7 was as we)y {
ematicians, no ma\tte}r1 how fervendy held,
ineteenth century, the existence of even 4 <
Ea d yet to be demonstrated. It remained pi)ssslirll:)glleet;:::l Sﬁendem;ﬂ Rumber
the same empty niche as those transcendental dolpk; o5 might occupy
An example was provided at long last by thf Frrelich
Joseph Liouville (1809-1882). Modern students may re ma[hemaman
from Sturm—Liouville theory in differentig] equations ::efmber hls fame
theorem (“an entire, bounded function is constant”) in ¢ mn{l rowiles
He contributed significantly to such applie o analysis

d areas as o
: : . . electricity 4
modynamics and, in an entirely different arena, was elected [OY nd ther-

bly of France during the tumultuous year of 1848 .

th}ilrty-nine years he edited one of the most inﬂuenct)ila;‘llKJ'C;?J\Srijlls1 ?rf tt}}‘lls*hfpf
tory of mathematics, originally titled Journal de mathématiques uere 1s_t
appliquées but often referred to simply as the Journal de Liouvillep[n :hjs
way, he was responsible for transmitting mathematical ideas to collleagues
around Europe and the world [6].
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ro. owev'er, beliefs of math-
PIove nothing Deep into the

the Assem-

Within real analysis, Liouville is remembered for two significant discov-
eries. First was his proof that certain elementary functions cannot have ele-
mentary antiderivatives. Anyone who has taken calculus will remember
applying clever schemes to find indefinite integrals. Although these matters
are no longer addressed with quite as much zeal as in the past, calculus
courses still cover techniques like integration by parts and integration by

partial fractions that allow us to compute such antiderivatives as Xl ¥dx =

~x’e™ = 2xe™ = 2¢™ + C or the considerably less self-evident

_ _1_ |tanx—«/2tanx +1|
Jfanx s = 1

" [tan x + v2tanx +1|

.

1
+ —arctan
1—tanx

V2

Note that both the integrands and their antiderivatives are composed of

functions from the standard Eulerian repertoire: algebraic, trigonometric,
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These ‘e ementary” in R
ic, a d their inverses. se are 1 tegrals with “QI&
mic,

» antiderivatives. . L
mentary an“dthc most diligent integrator will be stymied in his or her qQuest
even the o . . - qu
Alag, C\‘ i a6 a finite combination of simple functions. It was Liouville
for @i x £835 paper why a closed-form answer for certain integrals
in an

) e that, “One easily convinces o
le. For instance, he wrote U y neself

1ogari[hl

who proveb
is 1 0SS1 A '
) lmpr method that the integral J'%dx which has greatly occupied
possible in finite form” [7]. The hope that easy functiong
ntiderivatives was destroyed forever. |

In this chapter our object is Liouville’s othel.” famous contribution: 3

e trans endental numbers exist. His original argument came in
proof that trar}llsie refined and simplified the result in a classic 1851 paper
(1 8:;{1;:}112}50‘115 his own journal, of course) from WhiCh we take the proof
tﬁat follows [8]. Before providing his example of a lvutherto. unseen tran-
scendental, Liouville first had to prove an 1mp9rtant inequality about irra-
tional algebraic numbers and their rational neighbors.

by ou
geometers, is im
must have easy a

LIOUVILLE’S INEQUALITY

As noted, a real number is algebraic if it is the solution to some polyno-
mial equation with integer coefficients. Any number that solves one sud}
equation, however, solves infinitely many. For instance, J2is the solut;on 0
the quadratic equation x2 — 2 = 0, as well as the cubic equation x° + X"~ 22
-2=(-2)x+1)=0, the quartic equation x*+4x>+ sz— 8x -
=( = 2)(x+ 1)(x + 3) = 0, and so on. Our first stipulation, then, i that we
use a polynomial of minimal degree. So, for the algebraic numbgr 2, we
would employ the quadratic above and not its higher degree cousins. s

Suppose that x, is an irrational algebraic number. Following Liouvité
notation, we denote its minimal-degree polynomial by

1)
PG) =ax" + bx"! + cxn2 4 - - - + gx + h, (

=l
wherea b c, . »8,and h are integers and n > 2 (as noted above, if

i j orem
the algebraic number ig rational). Because P(x,) =0, the factor the
allows us to write

@
PGO = (x ~ x0) Q0),

: . estab
Polynomial of degree n—1. Liouville wished toviciﬂit y

where Q is 4

lish a boung upon the size of |Q(x)|, at least for values of x i the
of xo. We give :

his proof and then follow it with a simpler alternative:
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Liouville’s Inequality: If x; is an irrationa
minimum-degree polynomial P(x) = qyn
having integer coefficients and degree n >

real number A so that, if p/q is a rational number i

1 algebrai
1C number .
+bxr=1 4 yne2 with

tootex b
2, then there exists a positive

0 by - Lxo+ 11, then

L — X, 2 )
0 Aq"

lp
q

Proof: The argument has its share of fine
real polynomial Q introduced in (2).
bounded on any closed, finite interval

points, but we begin with the
This is continuous and thus
so there exists an 4 > with

[QI €A forall xin [x, - 1, x5+ 1] (3)

Now consider any rational number p/q within one unit of Xo, Where
we insist that the rational be in lowest terms and that its denominator be
positive (i.e., that g > 1). We see by (3) that |Q(p/q)| < A. We claim as well

that P(p/q) # 0, for otherwise we could factor P(x) = Lx - B)R(x), and
q

it can be shown that R will be an (n-1)st-degree polynomial

having integer coefficients. Then 0 = P(x,) = (Xo - %JR(XO) and yet

(xo - gj # 0 (because the rational p/q differs from the irrational x,),

and we would conclude that R(x,) = 0. This, however, makes X, a Toot
of R, a polynomial with integer coefficients having lower degree than
P, in violation of the assumed minimality condition. It follows that p/q
is not a root of P(x) = 0.

Liouville returned to the minimal-degree polynomial in (1) and
defined f (p,q) = q"P(p/q). Note that

p.9) = q"P(prg)
= q"[a(p/q)" + b(p/)" " + (plg)" >+ P+ h]

n-2_2

n-1 n (4)
:apn+bp11-1q+cp q +---+ gpq +hq

From (4), he made a pair of simple but telling observations.
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an integer, for its components a, b, ¢, eh

: nd g are all integers. Second, f(p, @) cannot be g &b if%ng
V‘(llh 17_2_1 np(p/q), then either ¢ = 0 or P(p/q) = 0. The forme; fo i’m N
f _(I’, qi;c‘;uqelq is a denominator, and the latter is impossib, g pos.
Sl'bk ssion ;b0\7e. Thus, Liouville knew that f(p, @) was a nonzemyi;ur
g;,aflrom which he deduced that N

First, f(p. @) 18

n = 2 1
lq" P/l = 1f(p. @)1 5

the proof followed quickly. From (3) and (5) and the

f
The rest 0 (x - xo) Q00), he concluded that

fact that P(X) =
] < IRl = q"lp/a — xR/ £ qlp/q — x,|A.

Hence [p/q - x| 2 IV/AQ", and the demonstration was complete. QED.
The role played by inequalities in Liouviue’s proof is striking. Modern
analysis is sometimes called the “science of inequalities,” a characteriza-
tion that is appropriate here and would become ever more so as the cen-
tury progressed.
We promised an alternate proof of Liouville’s result. This time, our
argument features Cauchy’s mean value theorem in a starring role [9].

Liouville’s Inequality Revisited: If x is an irrational algebraic number
with minimum-degree polynomial P(x) = ax" + bx"1 +cx"2+---+
gx + h having integer coefficients and degree n > 2, then there exisis
an A> 0 such that, if p/q is a rational number in [x — 1, xo+ 1], then,

14

= - X

q

21.
Aq"

Proof: Differentiating P, we find P/(x) = nax"~! + (n — 1)bx""2+(n~ o
*++g This (n - D)st-degree polynomial is bounded on [ = 1. %* .
s0 there is an A > 0 for which Pl <Aforallxe [xo— 1% ™ U' L;t-
tng p/q be a rational number within one unit of x, and applying !
mean value theorem to P, we know there exists a point ¢ between %o
and p/q for which

P(p/q) — P(x,) _ro. ©)
plq - x,

LIOUVILLE |23

Given that P(x,) =0 and ¢ belongs to [x. —
that 0~ LXo+ 1], we see from (6)
PO/l = 1p/q ~ xq| - 1P'(0)) < 4

Consequently, |q"P(p/q)| < Aq'lplq
a nonzero integer, and so 1 < Aq

Plg~x,).
= %ol- But, as noteq above

1P/ x|, The result gy @05

ows. QED.

At this point, an example might be of interest
irrational X = V2. Here the minimal-degree po.
the derivative of which is P'(x) =2x 1 ig cl
(W2 - L,¥2 +1], P’ is bounded by A=22

We consider the algebraic
lynomial is Ply=x2 -

ear th?t, on the 'mtervai
+2. Liouville’s nequality

shows that, if p/q is any rational in this closed intery then |2 - 3| »
1 R

V2 +2q"
The numerically inclined may wish to verify this for, say, g = 5. In this

. ‘ p
case, the inequality becomes 'E -2 = 0.00828. We then

>

(5042 +50)
check all the “fifths” within one unit of /2. Fortunately, there are only ten
such fractions, and all abide by Liouville’ inequality:

p/5 lp/5 - 21
3/5=0.60 0.8142
4/5=0.80 0.6142
5/5 = 1.00 0.4142
6/5=1.20 0.2142
7/5=1.40 0.0142
8/5=1.60 0.1858
9/5=1.80 0.3858
10/5 =2.00 0.5858
11/5=2.20 0.7858

12/5=2.40 0.9858

The example suggests something more: we can in general remove the
festriction that p/q lies close to x,. That is, we specify A* to be the greater
of 1 and A, where A is determined as above. If p/q is a rational within one
unit of x,, then

because A* 2 A.

= Aqn A* qn
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On the other hand, if p/q is a rational more than one unijt away fro
m x,

0 then
p

_—-—_\‘0

i ag because A* > 1 and q21as well

The upshot of this last observation is that there exists an A*

> 0 for whg,
U

q

> A*l regardless of the proximity of p/q to X

n

Informally, Liouville’s inequality shows that rational numbers are poor
approximators of irrational algebraics, for there must be a £ap of at leagt

o between x, and any rational p/q. It is not easy to imagine how Liouville
q

noticed this. That he did so, and offered a clever proof, is a tribute 1,
his mathematical ability. Yet all may have been forgotten had he not taken
the next step: he used his result to find the world first transcendental.

LiouviLLE’S TRANSCENDENTAL NUMBER

We first offer a word about the logical strategy. Liouville sought an
irrational number that was inconsistent with the conclusion of the inequal-
ity above. This irrational would thus violate the inequality’s assumptions,
which means it would not be algebraic. If Liouville could pull this off, he

would have corralled a specific transcendental. Remarkably enough, he did
just that [10].

oo

1 1 1 1
Theorem: The real number x, = SRS t—t+—t "
. er 0 Z{ 10k! 10 102 106 10

‘10120 + .- - is transcendental.

. 3 me
Proof: T}}ere are three issues to address, and we treat them one at ad“r:}:is
First, we claim that the series defining x, is convergent, a1

follows easily from the comparison test. That is, k! = k guarantees tha
1 = = vy _L

——— S — _ -—

10° 1ot ,and so g{—mh! converges because hz,l—“loh = m 9

In short, x is a real number.

. imal
expaS: cond, we assert that X, is irrational. This is clear from 1t5 deClr:1 ¢
S .
pansion, 0.1100010000000 . . . , where nonzero entries 0P

TSt o
- p}ace, the second, the sixth, the twenty-fourth, the o
ntieth, and gq on, with eve

the
in
r-longer strings of 0s separali’é
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increasingly lonely 1s. Obviously no finite block of this
sion repeats, S0 X is irrational.

The final step is the hardest: to show that Liouvilles ;
transcendental. To do this, we assume instead tha X is arr:\lrlanb}e)r is
irrational with minimal polynomial of degree n>7. B(; Liouv’?“g? raic
quality, there must exist an A* >0 such that, for any rational ;/Sqnf,é

decimal expan-

1
have P_ Xo| 2 P and, as a consequence,
q
Lo _ap
O<qu—'—xo‘ @)

We now choose an arbitrary whole number m > n and look at the

-1 1 1 1

1
tial sum E——=—+—+—+-~+—,If i
partia < 0" 10 108 100 o we combine

these fractions, their common denominator would be 10™, so we could

S P

ite the sum as ) —— = —~

wi kz_; 10" 10m
pm

is a rational.
Om!

, where p, is a whole number. Thus,

of course,

Comparing this to x,, we see that

i 1
P, _ 11 1
101:»11 ~Xo| = 2 10" - 1oumLY t 100+ * 1+ *
k=m+1
An induction argument establishes that (m+1)! 2 (m+ 1! + (= 1) for any
1 1 T ,
\Zhole number r = 1, and so W < W = o | 10
S a consequernce,
1
p _ 1 R S S
lonr;l — Xo| = 1O(m+1)! + 10(n1+2)3 + 10\1111—3)!

T +—/1"“+—‘m1”z‘
- 10(m+1)! 10(m+1)! %10 10(»:1 ' (10 )

1
I S
+ 10(m+1)! x (103)

1
1 1 __L+—————+"'
- 1otm+D! [1+ 10 * 100 1000

1 [10]_ 2 ®)
R e T
1O(m+l)! 9 10
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¢ caus
ﬂdiC[iOIl is now at ll(]l ld b(,: 1
tr €

A con
1 < (lom!)n ,B”_‘_ — XO by (7)
0<—5= / lOm!
A*
min _,_,2_,, by (8)
< (10 DA 10(m+1)!
2 2
2 2 =
mli(m+l-n) lom.

=
= Jou-nnt 10

lows because m>n implies that m+ 1 -n>

where the last step fol f inequalities shows that, for the value of g+

This long string 0

2 .
we have — < — forallm > n, or simply that 24* >
introduced above, we have e < o™ ply

10™ forall m > n. Such an inequality is absurd, for 2A* ?s a ﬁxed num-
ber. whereas 10™ explodes to infinity as m gets large. Liouville had (at
€1, o

last) reached a contradiction. 4

)By this time, the reader may need a gentle reminder of what was
contradicted. It was the assumption that the irrational x,, is algebraic.
There remains but one alternative: x, must be trans;endental. And the
existence of such a number is what Joseph Liouville had set out to
prove. Q.ED.

In his 1851 paper, Liouville observed that, although many had specu-

lated on the existence of transcendentals, “I do not believe a proof has ever
been given” to this end [11]. Now, one had.

Strangely enough, Liouville regarded this achievement as something
less than a total success, for his original hope had been to show that the
number e was transcendental [12]. It is one thing to create a number, as
Liouville did, and then prove its transcendence. It is quite another to do
this for a number like ¢ that was “already there.” With his typical flair, Eric

Temple Bell observed that it is

a much more diffic
like e or 7, is or is
infinite clags of ¢
entire master of (h
€ase, not the susp

ult problem to prove that a particular suspect,
not transcendental than it is to invent a whole
ranscendentals: . . . the suspected number is
€ situation, and it is the mathematician in this
ect, who takes orders. [13]

We might say that Lig
ber no one had

the ubiquitoy

't Liouville demonstrated the transcendence of 2 nuff'(f)l;
Previously cared about but was unable to do the same I
$ constant e, aboyt which mathematicians cared passionat€ ¥
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ll, it would be absurd to lgbel him a failure w
redecessors had been seeking in vain for 3 hy
That original objective would soon be realiz
1873, Charles Hermite (1822-1901) showed that e was indeed 2 tra
dental number. Nine years later Ferdinand Lindemann (1852-1939) n:cen-
the same about 7. As is well known, the latter established the impossilfili(zvedf
squaring the circle with compass and straightedge, a problem with Oﬁgﬂz;
classical Greece that had gone unresolved not just for decades or centuri
but for millennia [14]. The results of Hermite and Lindemann were i rezS
sive pieces of reasoning that built upon Liouvilles pioneering research P
To this day, determining whether a given number is transcenaental
ranks among the most difficult challenges in mathematics. Much work has
been done on this front and many important theorems have been proved
but there remain vast holes in our understanding, Among the great achieve:
ments, we should mention the 1934 proof of A. O. Gelfong (1906-1968),
which demonstrated the transcendence of an entire family of numbers at
once. He proved that if a is an algebraic number other than O or 1 and if p
is an irvational algebraic, then ab must be transcendental. This deep result

guarantees, for instance, that 2Y2 o W2 +35)7 are transcendental.
Among other candidates now known to be transcendental are ¢”, In(2),
and sin(1).

However, as of this writing, the nature of such “simple” numbers as
n¢, ¢°, and 77 is yet to be established. Worse, although mathematicians
believe in their bones that both 7 + ¢ and 7 X e are transcendental, no one
has actually proved this [15]. We repeat: demonstrating transcendence is
very, very hard.

Returning to the subject at hand, we see how far mathematicians had
come by the mid-nineteenth century. Liouville’s technical abilities in
manipulating inequalities as well as his broader vision of how to attack so
difficult a problem are impressive indeed. Analysis was coming of age.

Yet this proof will serve as a dramatic counterpoint to our main theo-
rem from chapter 11. There, we shall see how Georg Cantor found a
remarkable shortcut to reach Liouville’s conclusion with a fraction.of the
work. In doing so, he changed the direction of mathematical analysis. The
Fioqule—Cantor interplay will serve as a powerful reminder of the con-
tnuing vitality of mathematics. _ .

For now, Cantor must wait a bit. Our next object is the ultimate }1111
Nineteenth century rigor: the mathematics of Karl Weierstrass and the
8reatest analytic counterexample of all.

hen he found ¢
ndred years,

ed by one of his followers. 1

Omething hig



CHAPTER 1

v

Cantor

Georg Cantor

-l_he essence of mathematics lies in its freedom” [1]. So wrote Georg
Cgmor (1845-1918) in 1883. Few mathematicians so thoroughly embraced
this principle and few so radically changed the nature of the subject. Joseph
Dauben, n his study of Cantor’s works, described him as “one of the most
1r;1:g1nat1ve and controversial figures in the history of mathematics” [2]. The
P Sgni}giif;zhfo‘ﬂd demonstrate yvhy this assessment is valid.
tendencies more ;gm  line of musicians, and it is possible to see in hl}tln
Pragmatic techniciarfn;ssoqa%d with the romantic artist than with the
matics to the bordefs 011? research ?Ventually carried him beyond mather-l
eyebrow with claims thatnéitaphysms and theolggy. He raised man);ezn
canon and that his gy theoranqs Ba§on had written the §hakespeatG |

y of the infinite proved the existence of Go

As an uncomy .
. promi ) .
ating friend ang foeﬂ:;lijjvocatﬁ of such beliefs, Cantor had a way of alie™
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hile, his life was troubled. He suffered bouts of severe depres-

Mea\ﬂ"‘s’t cel;tai nly a bipolar disorder whose recurrences robbed him of

siom, almél freshness” he s0 coveted [3]. Time and again Cantor was sent to
e umen

called neuropathic hospitals to endure whatever treatment they

what wef;Zr In 1918 he died in a psychiatric institution after a life with
ofter. ‘

could ban its share of unhappiness. ) ,

mor;] t o of this detracts from Cantor’s mathematical triumph. For all of
0

- fortune, Georg Cantor revolutionized the subject whose freedom
his mis ’

he 50 Joved.

THE COMPLETENESS PROPERTY

As 2 young ma, Cantor had studied with Weierstrass at the University
of Berlin. There he wrote an 1867 dissertation on number theory, a field
very different from that for which he would become known. His research
ed him to Fourier series and eventually to the foundations of analysis.

As we have seen, developments in the nineteenth century placed cal-
culus squarely upon the foundation of limits. It had become clear that lim-
its, in turn, rested upon properties of the real number system, foremost
among which is what we now call completeness. Todays students may
encounter completeness in different but logically equivalent forms, such as:

Cl. Any nondecreasing sequence that is bounded above con-
verges to some real number.

C2. Any Cauchy sequence has a limit.

C3. Any nonempty set of real numbers with an upper bound has
a least upper bound.

Readers in need of a quick refresher are reminded that {x,} is a Cauchy
Sequence if, for every € > 0, there exists a whole number N such that, if m
i?(i;sare é"hok numbers greater than or equal to N, then Ix,, — x,/<€eIn
anothéraT }?UFEY sequence is one whose terms get and stay close to one

Likéwi;: 1Me? putina brief appearance in chapter 6. |
for a1 elemeﬁt ° said to be an upper bound of a nonempty set A if a < M

isan g sa }lan A, and A is a least upper bound, or supremum, of Aif
2971 Thesf foe; ound of A and (2) if M is any upper bound of A, then
~ There i ope Cetits appear in any modern analysis text. ;
Mlerya)g that Wﬂlo ler version of completeness, cast in terms of neste
Weneed 5 few deﬁp' dy an important role in the next few chapters. Again,
ninons to clarify what is going on.
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UbSQt
atAg
unded

interval la, bl 18 nested within [A, B if the former js .
A closed mhis amounts to nothing more than the condition th
further that we have a sequence of closed, bg

< B. Suppose - ;
a<b<B. C};Pneste d within its predecessor, as in [al, byl 2 (a,, bl
intervals, €2 b2 Such a sequence is said to be descending
. = g

a5 b5l 220
with this we can intro
descending sequence of closed, bounded intervals has 5
to each of the intervals.

duce another version of completeness:

C4. Any
point that belongs

tis worth recalling why the intervals in question must be both closeq
and bounded. The descending sequence of closed (but not bounded)

intervals

)22 =2B,2 2k

has no point common to all of them, and the descending sequence of
bounded (but not closed) intervals

0.1)2(0,12)20,1/3)2-- 20,1k 2"

likewise has an empty intersection (to use set-theoretic terminology).
Although our nineteenth century predecessors often neglected such dis-
tinctions, we shall arrange for our intervals to be both closed and bounded
before applying C4.

Each of these four incarnations of completeness guarantees that some
real number exists, be it the limit to which a sequence converges, or the
leaSF upper bound that a set possesses, or a point common to each of a col-
Egg;’zfocfarll:jlted ir}lltervals..As mathematicians probed the logical fgunda-
their theoreticgls’ they realized that such existence was often sufﬁqept for

purposes. Rather than identify a real number explicitly, it

ma
| y be enoug_h to know that a number is out there somewhere. Com-
pleteness provides that assurance.

One might ask: i
- if the complete - i how do
We Prove it? The 5 pleteness property is so important,

mumber sysem itserllfsv;er required mathematicians to understand thg rei
10 define the inge ers.( fom the wholfz numbers, it is a straightforwar [;1‘ )
the rationals, Bu% ¢ Positive, negative, and zero) and from there to defin
SYSIems, just as the ?nt.we create the real numbers from more elementary
Affirmative ans:; lonals were defined in terms of the integers? .
pendently, from hi ers_ to th1§ question came from Cantor and, in )
's friend Richard Dedekind (1831-1916). Cante™®
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. of the reals was based on equivalence classes of Cauchy
construcuoﬂf Lational numbers. Dedekind’s approach employed partitions
quences 0 | into disjoint classes, the so-called “Dedekind cuts.” A thor-
5 rationa 1 of these matters would carry us far afield, for construct-

g diSCUS51§mberS from the rationals is a bit esoteric for this book and,
ing th ealci1 bit esoteric for most analysis courses. Nonetheless, Cantor
¢ tol ‘da did it successfully and then used their ideas to prove the
ess property as 2 theorem in their newly crgated realm.

compléten : ¢ can be seen as the final step in the separation of

This achievernen ‘ i
from geometry. Dedekind and Cantor had gone back to the arith-
Calc"ﬂf ics—the whole numbers—from which the reals, then the com-
ﬁiﬁfn esass property and eventually all of analysis could be developed.

Their achievement received the apt but nearly unpronounceable moniker:

“he arithmetization of analysis.”

4 Dedekin

THe NONDENUMERABILITY OF INTERVALS

It is not for defining the real numbers that Cantor has been chosen to
headline this chapter. Rather it is for his 1874 paper, “Uber eine Eigenschaft
des Inbegriffes aller reellen algebraischen Zahlen” (On a Property of the Total-
ity of All Real Algebraic Numbers) [4]. This was a landmark in the history
of mathematics, one that demonstrated, in Dauben’s words, “[Cantory] gift
for posing incisive questions and for sometimes finding unexpected, even
unorthodox answers” [5].

Oddly, the significance of the paper was obscured by its title, for the
Tesult about algebraic numbers was but a corollary, albeit a most interest-
Ing one, to the paper’s truly revolutionary idea. That idea, simply stated, is
i}}l;la sequence cannot exhaust an open interval of real numbers. As we
i see, Cantor’s ‘aigument involved the completeness property, thus

"8 ltproperly in the domain of real analysis.

Theorem: .
™ 1 {x,} is a sequence of distinct real numbers, then any open,

ounded j . . .
i ed interval (o, ) of real numbers contains a point not included
mong the {xh}-

Proof:

* Canto - .

in conSeC:[.began with an interval (e, B) and considered the sequence
' Ve order: x,, x,, x;, X4, - . . . If none or just one of these terms

ies am0n i
o g the infinj . "
is mVially e nitude of real numbers in («, ), then the proposition
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instead, that the interval contains at least two sequence
hen identify the first two terms, by .Wh.iCh We megy,
b e with the twO smallest subscripts, that fall wuhm (o, B). We
Eilecr)\ote the smaller of these by Ay and'the. larger by B,. This step is iliyg,
rated in figure 11.1. Note that the initial fe-“kll terms of the sequence
fall outside of (@, B) but that x, and x; fall within it. By our definition,
4. =x (the smaller) and By = X4 (the greater). ,

1 Wé make two simple but important observations:

1 a<A1<B1<ﬁ,and o .
2. if a sequence term X, falls within the open interval (A, B)),

then k2 3.

The second of these recognizes that at least two sequence terms are
used up in identifying A, and By, so any term lying strictly between A,
and B, must have subscript k=3 or greater. In figure 11.1, the next
such candidate would be xg.

Cantor then examined (A,, By) and considered the same pair of
cases: either this open interval contains none or just one of the terms
of {x,} or it contains at least two of them. In the first case the theorem
is true, for there are infinitely many other points in (A;, B), and thus
in (a, B), that do not belong to the sequence {x; }. In the second case,
Cantor repeated the earlier process by choosing the next two terms of
the sequence, that is, those with the smallest subscripts, that fall with-
in (4, B,). He labeled the smaller of these A,, and the larger B,. lf we
look at figure 11.2 (which includes more terms of the sequence than
did figure 11.1), we see that A, = x,, and that B, = x1,.

Here again it is clear that

points. We t

L. a<A <A,<B,<B, < B and
2. if x; falls within the open interval (A;,B,), thenk 2 5.

I:Csll)lefore, the latter observation follows because at least four terms of the
quence {x,} must have been consumed in finding A,, By, A,, and By

\-}—I‘__‘_ B
AY
Xg x4 X T : ) 4{__—|——‘

Figure 11.1

o -

p A A B, B B
N L 1 1 AY [l 1 1
T V L4 T LI
xg X7 X10 X1 X4 Xg Xz X3

X X1 %8
Figure 11.2

tor continued in this manner. If at any step there were one or

«r uence erms remaining within the open subinterval, he

fewer .Se?nediately find a point—indeed infinitely many of them—

could urrll to (o, B) but not to the sequence {x;}. The only potential

b?flgniygarose if the process never terminated, thereby generating a
i;ircof infinite sequences {A,} and {B,} such that

1. a<A1<A2<A3<--‘<A,<-~<B,<-~<B3<BZ<

B, < B and
2. if x, falls within the open interval (A,, B)), then k> 2r + 1.

We then have a descending sequence of closed and bounded
intervals [A;, Byl 2 (A, Bl 2 1A, Bsl 2, each nested within its
predecessor. By the completeness property (C4), there is at least one
point common to all of the [A,, B,]. That is, there exists a point ¢
belonging to [A,, B,] forall r2 1. To finish the proof, we need only
establish that ¢ lies in (@, B) but is not a term of the sequence {x;}.

The first observation is immediate, for ¢ is in {A;, B;] < («, B)
and so ¢ indeed falls within the original open interval (&, B).

Could ¢ appear as a term of the sequence {x;}? 1f so, then ¢ =xy
for some subscript N. Because ¢ lies in all of the closed intervals, it lies
in [Ay,1, Byy ], and thus

Ay <Ay Sc<By, <By

it];o[l})ogs) t};)at €= xy lies in the open interval (A, By, and so, accord-
that ¢ Can; ove, N 2 2N + 1. This, of course, is absurd. We conclude
1 € none of the terms in the sequence {x;}.
O summarize, Cantor had demonstrated that in (@, B) there is a

Point n o . .
Ot appearing in the original sequence {x}. The existence of

su :
<ha point was the object of the proof. QED.

TOda .
We deﬁn}é this theorem is usually preceded by a bit of terminology.

a set e .
to be denumerable if it can be put into a one-to-one
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 with the set of whole numbers. Sequen'ces are trivig])
ence '“hl he required correspondence appearing as the sub.
wit et that cannot be put into a one-to-one correspoy.
ﬁnlteh e numbers is said to be nondenumerable. We then
ol[ above as proving that any open interval of rey

correSPO“d
denumerable,
scripts. An 10
dence with the W

characterize the resu

. ble.

nondenumerd . ; -

nume}Trs lsolution of Cantor’s thinking on this matter is Interesting
e ev :

Through the early 1870s, he'hald ponderfd thhe {ur:;latr;emal Properties of
mbers, trying to is0 ate exactly what sef em apart from the
the real nu byiously, completeness was a key distinction that somehqy,
miona.lsaohzltowas) ’meam by “the continuum” of the reals.
embgdtlecamor began to suspect there was a difference in the abundance of
numbirs in these two sets—what we now gall their “cardinality”—and in
November of 1873 shared with Dedekind his doubts that the whole num-
bers could be matched in a one-to-one fashion with the real numbers,
Implicitly this meant that, although both collections were infinite, the
reals were more so.

Try as he might, Cantor could not prove his hunch. He wrote
Dedekind, in some frustration, “as much as 1 am inclined to the opinion
that [the whole numbers)] and [the real numbers] permit no such unique
correspondence, I cannot find the reason” [6]. A month later, Cantor had
a breakthrough. As a Christmas gift to Dedekind, he sent a draft of his
proof and, after receiving suggestions from the latter, cleaned it up and
published what we saw above. Persistence had paid off.

‘ 'Readers who know Cantor’s “diagonalization” proof of nondenumer-
ability may be surprised to see that his 1874 reasoning was wholly differ-
3:;3:; dlggorial argument, which Cantor described as a “much simpler
oot w}i?g}?nés ;};pg:\rled inan 1891 paper {7]. In contrast to the }874
nalization Wa)S apphcabli ize;lg mYOked e compleencss D 1d1agnot-
far from the constraints of lllaFlons where completeness was ITEIEH:
Although the later argummeng & s
et the hgiStoriec Sieri rflrgumem is more familiar, the earlier one repres
again th ginning and so has been included here. We stress

at Cantor’s orig . e
Nor rajs iginal proof did not use terms like denumerability

€ specific ; . ]
come later, I;n 1874qlileesuons about infinite cardinalities. All this would

Open interval, simply showed that a sequence cannot exhaust an
But wh
y should anyo d
4 Spectacular ansyer yone care? It was a good question, and Cantor ha

g OF TRANSCENDENTALS, REVISITED

THE ExiSTENC |
% paper was titled, “On a Property of the Totality
r's ) :
ecall that _Ca;lltomblzrs,” To this point, algebraic numbers have yet
raie hl;ve we said anything about the “property” of these
bernemioned'ﬁotrhe iitle refers. The time has come to address those
10 hic
s 0 w
is algebraic if it is the solution to a polyno-
fficients. There are infinitely many of these
ny rational number), and it was no easy matter for Liouville
. ance, & . .
(for instane mber that lay outside the algebraic realm. ' |
findan¥ on considering the matter, claimed that it was possible to
Canto", °F mbers in a sequence. At first glance, this may seem

ebraic U . :
tthe algus It would require him to generate a sequence with the twin

ero .
Pfep‘;;es that (1) every term was an algebraic number and (2) every
pfoﬁ)raic qumber was somewhere in the sequence. A clever eye would be
iegcessary to do this in an orderly and exhaustive fashion, but Cantor was

nothing if not clever. He began by introducing a new idea.

omissio™ - real number
’

) ith integer o€
) ation Wi
mial equ

lis

Definition: If POQ) = ax™ + bxm! + cx"™2 +- - -+ gx +h is an nth-degree
polynomial with integer coefficients, we define its height by (n—1)+
lal+ bt + It + - - - + hl.

Forinstance, the height of P(x) = 2x3 — 4x? + 5is 3 - 1) +2+4+5=13

nd that of Q(x) = x6 — 6x* — 10x3 + 12x2 = 60x + 17 is (6= 1) + 1 + 6 +
0+12460+17=111.

" a?viagllz rtl}llle }tl)elght of a polynomial with integer coefficients will itself
o] o }:2 er. Furtber, any algebraic number has a minimal-degree
ober hgy | Thse coefﬁc1en.ts we can assume to have no common divisor
N tufse conventions simplify the task at hand.
i1 nt }Tzlllle;ted all algebraic numbers that arise from polyno-
Uheigh 3 3ng ,so those that arise from polynomials of height 2, then
"0 an infipye on. This was the key to arranging algebraic numbers
Sequence, here denoted by {a,}
k)

Process in act
. ion, we L
clents of height observe that the only polynomial with

Qation p(y) <oy lis P(x) =1 - x! = x. The solution to the
=01s the first algebraic number, namely a, = 0.

_ Cantor

Clateq e
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There are four polynomials with height 2:

P1(X)=xz, Pz(x)=2X, P3(X)=X+ 1,P4(X)=x— L.

Setting the first and second equal to zero ?/ields the solution x = which
we do not count again. Setting P (x) = 0 gives @y = —1 and P, (x) = 0 giyes

® =Vbe continue. There are eleven polynomials of height 3:
P, () =x7, P, (x) = 2x2, P3 (%) =x2+1,P,(x)=x*-1,
Ps(x)=x>+X, Py (x)=x*—x, P; () = 3x, Pg(x) =2x + 1,
Py(x)=2x -~ 1, P o) =x+ 2,P, 00 =x-2.

Upon setting these equal to zero, we get four new algebraic numbers:

1 1 B
a4 = _E’ ds = —2‘, ac = "‘2., and (17 =2,
As his title indicated, Cantor was restricting his attention to real algebraic
numbers, so 0 = P; (x) = x* + 1 added nothing to the collection.

And on we go. There are twenty-eight polynomials of height 4, and
from these we harvest a dozen additional algebraic numbers, some of
which are irrational. For instance, the polynomial P(x) = x? +x — 1 is of
-1+45 -1-45

and .

2 2

As the heights increase, more and more algebraic numbers appear.
Conversely, any specific algebraic number must arise from some polyno-
mial with integer coefficients, and this polynomial, in turn, has a height.

For instance, the algebraic number /2 + /5, which we encountered in

chapter 8, is a solution to the polynomial equation x6 — 6x* — 10x> + 12x* =
60x + 17 = 0 with height 111,

A few simple observations allowed Cantor to wrap up his argument

height 4 and contributes

. Fgr a given height, there are only finitely many POlynomials
with integer coefficients.

* Each such polynomial can generate only finitely many new
algebraic numbers (because an nth-degree polynomial equatiot
can have no more than n solutions).

* Hence, for each height there can be only finitely many new
algebraic numbers,

CANIUR g4

« . o” 4 given height in our quest for algebraic
s that, Upor?lere;tef;gﬁ t;agt height %fter finitely many steis. We
arbers: wet:::‘;ffii a height trying to list an infinitude of new algebraic
et “S
DS ihe number J2 +3/5 with its polynqmial of height
Consequent’y: somewhere in our sequence {a,}. It will take a while,
111 has 10 show 1;2{ Aftter finitely many steps, bring us to height 111, and
put the proces® gllrou,gh the polynomials of this height, we reach x® — 6x* —
then,aswezl’un6OX+ 17 after finitely many more. This will determine the
12’; g+ 3/5 in the sequence {ay,}. The same can be said of any
mber. So, the “property” of the algebraic numbers men-
" in Cantor’s title is, in modern parlance, its denumerability.
uorl;] ow he combined his two results: first, that a sequence cannot exhaust
aninterval and, second, that the algebraic numbers form a sequence. Indi-
idually, these are interesting. Together, they allowed him to conclgde that
the algebraic numbers cannot account for all. points on an open interval.
Consequently, within any (o, B), there must lie a tragscendental,
Or, to put it directly, transcendental numbers exist.
Of course, this was what Liouville had demonstrated a few decades

1 1 1 1 1
eatlier when he showed that Z{Bh—, = E + F+ F + oF +

osition 01
real algebraic 1Y

I()Tzo+ -+ was transcendental. To prove the existence of transcendental

numbers, he went out and found one.

Cantor reached the same end by very different means. Early in his
1874 paper, he had promised “a new proof of the theorem first demon-
srated by Liouville,” and he certainly delivered [8]. But his argument, as

we h ; .
: .k.ave seen, contained no example of a specific transcendental. It was
nkingly nonexplicit.

T
e moacﬁntras[ the two approaches, we offer the analogy of finding a nee-

hisolg d(;)}’ls;:ti-k\i?\’e envision Liouville, industrious to a fault, putting on

2brolng gy, ’Hou?gl out to the field, gnd rooting around in the hay under

o0 the elygiye qua ; .ater, drenched with perspiration, he pricks his finger

PUrg Teason 1 Shojvr}t,}’la needle! Cantor, by contrast, stays indoors using

am 1 He dedyony [hat the mass of the haystack exceeds the mass of the

ount for e exc at tf_lere must be something else, that is, a needle, to
¢ss. Unlike Liouville, he remains cool and spotless.

Tel thematicj
lieg Upo 1¢lans were troubled by a nonconstructive proof that
Compared to Liouvilles lengthy

€ Properties of infinite sets.
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: Imost like slej
Cantors seemed too easy, a Sleight.
arﬁg%ﬂe‘rvtrand Russell (1872-1970) may not have beer, 4]
yo

tial reaction to Cantor’s ideas:

[ spent the time reading Georg_Cantor, and COPYINg out the
him into a notebook. At that time 1 falsely supposed all hig argy.
ments to be fallacious, but I neverthgless went through them g .
the minutest detail. This stood me in good stead when later on]
discovered that all the fallacies were mine [9].

of-hay, d
; e
One in hig ni.

gist of

Like Russell, mathematicians came to appreciate Cantor for the inpg,
vator he was. His 1874 paper ushered in a new era for analysis, where the
ideas of set theory would be employed alongside the ¢ - § arg
the Weierstrassians.

Cantor’s work had consequences, many of which were truly astonigh.
ing. For instance, it is easy to show that if the algebraic numbers and the
transcendental numbers are each denumerable, then so is their union, the
set of all real numbers. Because this is not so, Cantor knew that the tran-
scendentals form a nondenumerable set and thus far outnumber their

algebraic cousins. Eric Temple Bell put it this way: “The algebraic numbers
are spotted over the plane like stars against a black sky; the dense black-
ness is the firmament of the transcendentals” [10]. This is a delightfully
unexpected realization, for the plentiful numbers seem scarce, and the
scarce ones seem plentiful. In a sense, Cantor showed that the transcen-
dentals are the hay and not the needles.

A related but more far-reaching consequence was the distinction
between “small” and “large” infinite sets. Cantor proved that a denumer-
able set, although infinite, was insignificantly infinite when compared toa
nondenumerable counterpart. As his ideas took hold, mathematicians
came to regard denumerable sets as so much jetsam, easily expendable
when addressing questions of importance. _

_ Aswe shall see, dichotomies between large and small sets would aris¢
in other analytic settings. At the turn of the nineteenth century, René Bair¢
found a “large/small” contrast in what he called a set’s “category” and
Hen'ri Lebesgue found another in what he called its “measure.” AltbO‘égh
cardinality, category, and measure are distinct concepts, each Pro‘”de. :
means of comparing sets that would prove valuable in mathematc
analysis, .

Cantor addressed other questions about infinite sets. One Wail T/;rlz
€ nondenumerable sets having greater cardinality than in[?Wals ofan
answered in the affirmative. Another was, “Are there infinite sets

Uments of

ther
he
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. Jlity between 2 denumerable seqlllepce a\;l/iha S:TRCOI:S
diate cardind lThis he never succeeded in resolving. Canto
intermeble interval? sinuing research, set theory took on a life of its
e sision and C?Ee concerns of analysis proper. But it all grew out
m

CANTOR

1,
foun! luite apart fro

oWl ql 874 paper.

. : through history, Georg Cantor
of i ke many revolutionaries down g
1 .

‘ i ly enthusi-
unl deas embraced by the wider community. An early

' « intellects of
jived t0 S€€ his1 ho described Cantor as “one of the greatest

was ussell, W rury” 1111, This is no small praise from a mathemati-
. th cen .

he nm;teen her, and eventual Nobel laureaFe el .

cian, pHiloSOP. = tor’s admirers was the Italian prodigy »uo olterra. i
Anothe{1 Obf Ci?ifully combined Weierstrassian analysis and Cantorian

hich bed
w0r1}<1, ‘(')Vry ‘s the subject of our next chapter.
cet theolys



