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Thus both hyperbolic regions are squeezed between rectangles of the same areas, g
both intervals can be divided into subintervals as small as desired, it follows tha;t t;c
hyperbolic areas are equal. € tw

When the Belgian Jesuit Alfonso Antonio de Sarasa (1618-1667) reaq Gregory
work in 1649, he immediately noticed that this calculation implied that the area A(x)g“;z:r
the hyperbola from 1 to x had the logarithmic property A(af) = A(a) + AB). (Becaug
the ratio B : 1 equals the ratio o : a, the area from 1 to B equals the area from toof
Because the area from 1 to o is the sum of the areas from 1 to « and from q to ap, thé
logarithmic property is immediate.) Thus if one could calculate the area under the hyper.
bola xy = 1, one could calculate logarithms. The search for means of calculating these
areas led to the power series methods of Newton and others in the 1660s, methods whicy
were instrumental in Newton’s version of the calculus.

12.3 POWER SERIES

In 1668, Nicolaus Mercator (1620-1687) published his Logarithmotechnica (Logarithmic
Teachings), in which appeared the power series expansion for the logarithm. Mercator
having read the hint of de Sarasa that the logarithm was related to the area under3
hyperbola and having learned from Wallis how to calculate certain ratios of infinite sums
of powers, decided to calculate log(1 + x) (the area A under the hyperbolay = L+
from O to x) by using such infinite sums. He divided the interval [0, x] into n subintervals
of length x/n and approximated A by the sum
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a power series ‘in x which enabled actual values of the logarithm to be calculated easily.

Power series for other transcendental functions were discovered by James Gregory
(163‘8—1675) in Scotland arour}d 1670 and communicated to John Collins (1625-1683),
the secretary 'of the Royal Society, without any indication of how they were discovered.
For example, ina letter of December 19, 1670, Gregory wrote that the arc whose sine is B
(where the radius of the circle is R) is expressible as
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In modern terminology, Gregory’s series is the series for 1/R arcsin B/R, which, if R = 1,
can be written
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Similarly, in a letter of February 15, 1671, Gregory included, among others, the series for
the arc y given the tangent x and vice versa, written in modern notation as:
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However Gregory derived these series, it turns out that the arctangent series, as well
as series for the sine and cosine which Newton found in the mid-1660s, had been discov-
ered in southern India perhaps 200 years earlier. These series appear in Sanskrit verse in
the Tantrasangraha-vyakhya (c. 1530), a commentary on a work by Kerala Gargya
Nilakantha (1445-1545) of some 30 years earlier. Unlike the situation for many results of
Indian mathematics, a detailed proof of these results exists, in the Yuktibhdsa, a work in
Malayalam, the language of Kerala, the southwestern region of India. The Yuktibhasa,
written by Jyesthadeva (1500-1610), credits the arctangent series to the earlier mathema-

tician Madhava (1340-1425), who lived near Cochin.
The Sanskrit verse giving the arctangent series may be translated as follows:

The product of the given sine and the radius, divided by the cosine, is the first result. From
the first [and the second, third, etc.] results, obtain [successively] a sequence of results by
taking repeatedly the square of the sine as the multiplier and the square of the cosine as the
divisor. Divide the above results in order by the odd numbers one, three, etc. [to get the full
sequence of terms]. From the sum of the odd terms subtract the sum of the even terms. The
result becomes the arc. In this connection . . . the sine of the arc or that of its complement,
whichever is smaller, should be taken here [as the given sine]; otherwise the terms obtained
by the [above] repeated process will not tend to the vanishing magnitude.?




FIGURE 12.14
Jyesthadeva’s derivation
of the arctangent series.

It is not difficult to translate these words into the modern symbolism of the
arctangent series which Gregory found, noting that the author has realized tha Conver

gence only occurs when tan 6 = 1.
Jyesthadeva's proof of the validity of the arctangent series begins with the following
lemma where, for simplicity, the radius of the circle is set equal to 1:

Lemma. Let BC be a small arc of a circle with center O. If OB, OC meet the tangen;
any point A of the circle in the points B,, C, respectively, then arc BC is given approxi.

mately by arc BC ~ B,C\//(1 + AB?) (Figure 12.14).

If perpendiculars BD, B,D, are drawn to OC, it follows by similarity tha % =
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small, OB, ~ OC, and therefore arc BC ~ BD = rilryy
Dividing the tangent t = AC, to arc AC into n equal parts, applying the lemma to ¢ach
in turn, and then letting n get indefinitely large gives
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To complete the derivation, Jyesthadeva needed to deal with sums of integral powers.
Like ibn al-Haytham, he showed that
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a result which implied Wallis’ theorem that
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Substituting that into the earlier formula gave him the final result that
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Why were Hindu authors interested in this series? Their main goal seems to have been
the calculation of lengths of circular arcs, values of which were necessary for astronomical
purposes. This series permitted that calculation. For example, direct substitution of ¢t = 1
givesmw/d =1 — 1/3 + 1/S — 1/7 + - - -. Because this series converges very slowly,
however, it was necessary to make various modifications. Thus, the Tantrasangraha-
vyakhya contains other series whose convergence is considerably more rapid, including
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Interestingly enough, it was the same question of determining arc length of a curve
which brought European authors to the realization that the tangent problem and the area
problem were related.

4 RECTIFICATION OF CURVES AND THE FUNDAMENTAL THEOREM

Descartes stated in his Geometry that the human mind could discover no rigorous and
exact method of determining the ratio between curved and straight lines, that is, of deter-
mining exactly the length of a curve. Only two decades after Descartes wrote those words,
however, several human minds proved him wrong. Probably the first rectification of a curve
was that of the semicubical parabola y* = x> by the Englishman William Neile (1637-
1670) in 1657 acting on a suggestion of Wallis. This was followed within the next two
years by the rectification of the cycloid by Christopher Wren (1632-1723), the architect
of St. Paul’s Cathedral and much else in London, and the reduction of the rectification of
the parabola to finding the area under a hyperbola by Huygens. The most general proce-
dure, however, was that by Hendrick van Heuraet (1634-1660(?)), which appeared in van
Schooten’s 1659 Latin edition of Descartes’ Jeometry.

41 The Work of van Heuraet

Van Heuraet began his paper De transmutatione curvarum linearum in rectas (On the
transformation of curves into straight lines) by showing that the problem of constructing




