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360 Chapter 10 Mathematical Methods in the Renaissance

o the yz plane. The line segment fg represen;

12 equal parts. and both vertical and h"fin,,l,ng
oints. At each of th? 1} points i, the h"TiZOnm lit:}
diameter of the circular section C; made by a horizontg c‘“line

of intersection of this circle with the ellipse are SYMmMetric
to its diameter and therefore determine the width v of
{

f the cone onto the x_,\'.plang then consists of thjg Serie
of concentric circles C;. The contipuatlon ..Of each‘ \hemcal hn:tl be.c.0m§s a chord in yp,
corresponding circle whose length is w;. Diirer thus has a rough Pf()]§Ct|0n of Yht_? ellipse.
The outline of the ellipse is, however, not symmetric about its minor axis, since thig
projection is not taken from a directign perpend.ncular.to tpe plane‘ .Of the ellipse itself But
when Diirer attempts to draw the ellipse from 1ts pI‘OjeCt.lon, he snmp.ly'tran.sfers the line
segment representing the axis of the ellipse to a new vertlca! line fg. divides it at the same
points i, draws horizontal line segments through eacﬂh Of width Wi ?“d then sketches the ¢
curve through the ends of these line segments. Diirer's drawing is therefore in errgy .
because the curve is wider at the bottom than at the top. A possible reason Diirer did po ‘
realize that the ellipse should be symmetric about its minor axis is that the centerline of
the cone, around the projection of which all the circles are drawn. does not pass through
the center of the ellipse. Although one can prove thatw;, = wpo_; (i = 1,2,3.4, S)byan
analytic argument, Diirer probably believed that the ellipse was in fact egg-shaped—he
does call it an Eierlinie—because the cone itself widens toward the bottom."

After describing the construction and representation by projections of other space
curves, Diirer continued in the second book of the Underweysung to describe methods for
constructing various regular polygons, both exact ones using the classical tools of straight-
edge and compass and approximate ones, taken from the tradition of artisans. Thus the
work, which was published in Latin several years after its German edition, served both to
ipt'roduce the artisans to the Greek classics and also to familiarize professional mathema-
ticians with the practical geometry of the workshop. The third book of the text was purely
practical, showing how geometry could be applied in such varied fields as architecture and
typography. Here Diirer suggested new types of columns and roofs as well as the methods
of accurately gonstructing both Roman and Gothic letters. In the final book Diirer returned
I)(:irr?i(c)lrﬁacrk;)s:;iszxgje?s and dez}lt with the geometry of. three-dimensior}al bodies. In
o foun(i e Zonstrllllcuor} of the five regular solids by paper folding. a r.ﬂelh;d
also presented other pro)gletsn‘:ef . smﬂaf prqcedurt?s for cer{am ser.mregular sohds.‘ e
concluding the work with the b0 construction, including that of doubling the cupe. betorf

asic rules for the perspective drawing of these solid figures.

plane ont

one with its cutting
nto

f the ellipse is divided i
h the division p

projects the ¢
the diameter O
lines are drawn throug
represents part of the
plane. The two points \
located on the ellipse with respect
the ellipse there. The projection O

10.2 GEOGRAPHY AND NAVIGATION

Two related aspects of math
world of the sixteenth ce
Qemonstrates how, by th
ume, a sufficient ship,
conducted; and in a]]
possible means, where

ematics discussed by Dee and extremely important t0 the
enst;:(r))r’t:slfre geography and navigation. *“The art of NaViga“"":
between angc;od i by .the aptest direction, and in the shor®
storms andynavtvo Places (in passage navigable) assigned. ma);es:
by 10 rec ural disturbances chancing, how to use the %>

ver the place first assigned.”!* In the fifteenth and S*



V.4 UCOETApny ana Navigauon J01

teenth centuries, Eu
s, Europeans i
om wore o e B impe(:lrr::s were exploring the rest of the world, and methods of naviga-
grest alvantages i thep ance. The country that could employ new techniques well had
quest for new colonies and their attendant natural resources

The major probl ioati
latitude and J]ongitud eer:t (:;1 ;agvilvgee::lz?n gn Tt:e ;eés was the determination of the ship’s
latitude, in the northern hemisphere Waq' . ueal trMhOf.th.ese was not too difficult. One’s
and this was marked, approximalel); by\ P;arig 0t ;1 € dlltlt9de of the north celgstial pole,
the latitude was found simply by tak’ing o al{i;Ude p;); star. A good approximation of
finding latitude was by observation of the sun. The zeer(l)itltl c;::z:iZet?tilete:l?s tet {neﬂll()d .
is equal to the latitude minus the sun’s declination Navigato}s of the fi sun at local noon
accurate tables of the declinati ' ¢ fifteenth century had
reading of the sun’s altitude a:“;gofl?.r ’?rl:?si?tyitziiéh\iazezg% zz:?ey need?d oy o e
) , se, the highest altitude of
the day and COulq be determined by finding the shortest shadow of a stangard pole

The determination of longitude was much more difficult. Knowing the dif.ference
betwe?n the longitudes of two places is equivalent to knowing the difference between their
local times, because 15° of longitude is equivalent to one hour. Theoretically, if one had a
clock set to the time at a place of known longitude and could determine when, on that
clock, local noon occurred at one’s current location, the difference in time would enable
one to make a determination of longitude. Alternatively, one could compare the known
time of an astronomical event, such as an eclipse of the moon, at the place of known
Jongitude with its local time at one’s current location. Unfortunately, these methods could
not work given the state of time keeping devices in the Renaissance. They were simply not
accurate enough, especially if operated on the moving decks of a ship at sea. When
Columbus attempted to determine longitude on his second voyage to America in 1494
using an eclipse of the moon, his error was about 18°. Despite rewards offered by various
European governments for the invention of accurate methods of determining longitude at
sea, the problem remained unsolved until the eighteenth century, when an accurate marine
clock was finally devised.

Given these difficulties of finding one’s location at sea, it is not surprising that seamen
often used methods of “guesstimation” rather than mathematical astronomy. While schol-
ars were aware that a great circle route was the shortest distance between two points,
sailors generally preferred to sail to the latitude of their destination as quickly as possible
and then head due east or west until they reached land. Whatever the method of navigating,
however, the seamen needed accurate maps. Dee called the making of these maps Geog-
raphy: “Geography teaches ways by which in sundry forms (as spherical, plane, or gther)
the situation of cities, towns, villages, forts, castles, mountains, woods, havens, rivers.
creeks, and such other things, upon the outface of the earthly globe . . . may be described
and designed in commensurations analogical to nature and verity, and most aptly to our
view, may be represented.” " o ‘

Maps had been drawn since antiquity. Ptolemy in his Geography ‘haild analyzed 5.01'36
of the problems of mapping the round earth onto flat paper, had exhibited the longitude

and latitude of the known localities of the inhabited world, and had included some 26

regional maps as well as a world map. To construct his maps, he needed to use some torr’n
of projection that is, some way of constructing a function from a portion of the earth’s

spherical surface to a flat piece of paper. Presumably, Ptolemy wanted‘ the resultant maps
tP sent the shape of the land masses depicted as closely as possible. In any case, a
0 r_ePfte_ s determin de lines, generally known as
projectio:

ed by the grid of longitude and latitu




respectively. For his regional maps. Ptolemy simply used 5

On the spherical earth, however. because the Spacin ¢
Jatitude, he chose a scale in the two directions < that iof(
sponded approximately to the ratio of the length of one degree of longitude o the mige
parallel of the map to on¢ degree of latitude. This ratio is equal to MN : AR (beca:)
length of a degree of longitude at the equator is equal to that of a degree of latitude, c“?‘Vhe
in turn equals NP : BC, NP : NC. and finally cos & (Figure 10.8). For example b'e“hrch
Ptolemy's map of Europe reaches from latitude 42° to latitude 54°, the given rat}o Sﬁaw
be approximately cos 48° = .6691,0r2: 3. P

For his world map, which included only what he calculated to be 180° of longituge
stretching from the Strait of Gibralter to China, Ptolemy chose two different methog; n
the first, the parallels were represented by concentric circles centered on the norty Mﬂ
while the meridians were straight lines from the pole, which was not included on the m:
Ptolemy realized that this projection could not preserve the proper ratio between degrei
of longitude and degrees of latitude, except within a small region of a particular pa;allel
which he took as the parallel of Rhodes, 36°. Thus, as in all projections of a major POme;
of the earth’s surface, some distortion was inevitable. Ptolemy later developed a more
natural appearing map by modifying the meridians into circular arcs as well. This map
gives a correct representation of distance on three selected parallels through which the
circular arcs are drawn, but still has distortion far from the center of the map (Figur
10.9).

Because it is impossible to make an absolutely correct map on a flat piece of paper.
the mapmaker always needs to make some choice of the particular qualities of the projec-
tion desired. The mapmaker can choose to preserve areas or shapes or directions or dis-
tances. The larger the portion of the earth’s surface to be represented, the more difficultit
is for the map to have several of these qualities, even approximately. In general. the map
used by seamen during the early Renaissance were constructed by using a different cn-
rion., ease of drawing. These “plane charts” used a rectangular grid for parallels and
meridians, with the same scale on each. Because the distances between the meridians were
thg same at all latitudes, and because the true distance depends on the cosine of 1
la.tltud‘e, shapes on these maps had the appearance of being elongated in the hOfi":O"'
direction. Thus shape was not preserved and more important for the sailor. lines of O

meridians and parallels,
gular grid for these lines.
meridians depends on the

FIGURE 10.8 ude 8
Relation of length of a degree of lon8I™ ©
latitude & to that of a degree of long!"
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FIGURE 10.9
prolemy’s world map for
the 1552 Basel edition of
kis Geography. (Source:
Smithsonian Institution
Photo No. 90-15779)
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stant compass bearing, called rhumbs, were not represented by straight lines. When such
maps were of relatively small areas, the rhumb lines were straight enough and were often
drawn in for each of 8 or 16 compass directions. But as long sea voyages became increas-
ingly common, improvements were required.

One of the first to attempt to apply mathematics to the improvement of mapmaking
methods was Pedro Nufez, in his Tratado da sphera of 1537, He discovered that on a
sphere a rhumb line or loxodrome, as it is now called. becomes a spiral terminating at the
pole. Using globes for navigation, however, was inconvenient because they could not be
made large enough. Nuiiez therefore attempted to develop a map in which loxodromes
were straight lines. For accuracy, however, it was necessary that the meridians converge
near the poles. Although Nufiez was able to design a device that enabled satlors to measure
the number of miles in a degree along each parallel, he was not able to solve the problem
he had set.

By 1569, Nufiez’s problem was solved from a slightly different point of view by
Gerard Mercator (1512—1594), with a new projection known ever since as Mercator's
projection (Figure 10.10). Both parallels and meridians were represented by straight lines
on this map. To compensate for the “incorrect” spacing of the meridians, theretore. Mer-
cator increased the spacing of the parallels toward the poles. He claimed that on his new
map rhumb lines were now straight and a navigator could simply lay a straightedge on his
map between his origin and his destination to determine the constant compass bearing to
follow. Mercator did not explain the mathematical principle he tollowed for increasing the
distance between the parallels, and some believe that he did it by guesswork alone. Not
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FIGURE 10.11
A world map in Mercator
projection on a Canadian

stamp.

erdssans~

ght (15614615). On Certain Errors in N("'ik'ari(,n(
methods appear in print (Figure 10,11,

th of a degree of longitude at latitude o, ¢, one
equator is equal to cos . If meridians are~straight !i’nes, then. the distances between
at a latitude ¢ are stretched by a factor of sec &. For loxodromes to hc straight o, sk
map, then, the vertical distances must also be stretchled by the same factor. Because e a
varies at each point along a meridian, the stretchmg factor needs to be considereq for ; b
small change of latitude. If we denote by D(d) the distance on the map between the equCh
and the parallel of latitude &, the change dD in D(d) caused by a small change ¢4, in :9’
determined by dD = sec &dd. Because the same factor applies horizontally as wey; | i

“small” region on the globe w

until the work of Edward Wri \599)

did an explanation of Mercator’s

Recall that the ratio of the leng '
dl the

lhem

1l
ill be represented on the map by a “small™ regiop O’fa[‘}‘ly
< e

same shape. The angle at which a line crosses a meridian on the globe will be transform,

into that same angle on the map and loxodromes will be straight. It follows from tl?’é

argument that, in modern terminology. the map distance between the equator and [}:5
¢

parallel at latitude & is given by

&
D(¢) = fo sec bdod, (10.1

where the radius of the globe is taken as 1. Wright, of course, did not use integrals. He
took fqr his d¢ an angle of 1’ and computed a table of what he called “meridion:al pa‘ng"
by adding the products sec dd¢ for latitudes up to 75°. D(&) can be calculated by calculus

techniques as
In(sec & + tan ¢) or ln(tan(—7 + —)).lb
2 4

. IVIJ;z:t(l))r?se gnll(e):lt) i\:ercgtor on one of his trips to the continent. He returned with severa
detaile of Moroatorms and prqbably conferred W'lth Wright concerning the mathematical
“analogical t natun grlczljlecnon.’Thus he was involved in the process of making maps
nately not “analogicail o :;:"?tO’{ Sf map, although well suited for navigation. was unfortu-
parallels greatly increased th re” for regions far from the equator. The spacing out of the
generations of stud e relative size of such regions. The popularity of the map led

udents to believe, for example, that Greenland is larger than South Amer-

0.3 ASTRONOMY AND TRIGONOMETRY

Accor.ding to Dee, “Astronom
magnitudes, and all natura] m,
fixed stars, for any time pas

o);i:)sn:na?temathematical which demonstrates the distanc®
t, presf;nt gn:r? nees, a"d, passions proper to the plat_\éts
izon. By this art “(: come, in respect of a certain horizon.
the center of th € are certified of the distance of tt}e St‘f'y
the earth’s ; Garth:' ;‘7“‘1 of the greatness of any fixed st&f
e heaven] g;ea.mess_ Thus, the purpose of astronomy 1
SmOgraph; bodies as well as to determine their SizeS and
POy, “the whole and perfect descrintion of the he#¥



