Kernfragen zur Analysis VIII. Integration im \mathbb{R}^N

- 1. Wie kann man stetige Funktionen mit kompaktem Träger im \mathbb{R}^N integrieren?
- 2. Wieviele lineare, monotone und translationsinvariante Funktionale auf $C_c^0(\mathbb{R}^N, \mathbb{R})$ gibt es?
- 3. Was sind halbstetige Funktionen?
- 4. Welche hinreichenden zusätzlichen Voraussetzungen an oberhalb- bzw. unterhalbstetige Funktionen f, g und reelle Zahlen λ kennst Du, um sicherzustellen, dass f + g, fg, λf , $f \circ g$ wieder oberhalb- bzw. unterhalbstetig sind?
- 5. Welche der folgenden Aussagen sind richtig, welche falsch? (Hierbei seien $f_n \in C^0(K, \mathbb{R}^m), K \subset \mathbb{R}^N$ kompakt, $N \in \mathbb{N}$)
 - \bullet Konvergiert f_n gleichmäßig gegen f, so ist f stetig.
 - Konvergiert f_n gleichmäßig gegen f, so ist f halbstetig.
 - Konvergiert f_n monoton gegen f, so ist f stetig.
 - Konvergiert f_n monoton gegen f, so ist f halbstetig.
 - Konvergiert f_n monoton gegen ein stetiges f, so konvergiert f_n gleichmäßig.
- 6. Sind die charakteristischen Funktionen von offenen Mengen oberhalb- oder unterhalbstetig?
- 7. Wie kann man halbstetige Funktionen integrieren?
- 8. Wie lautet der Satz von Fubini?
- 9. Wie lautet die Transformationsformel für Integrale stetiger Funktionen mit kompaktem Träger im \mathbb{R}^N ?
- 10. Unter welchen Voraussetzungen an eine Funktionenfolge halbstetiger Funktionen lassen sich Integral und Grenzwert bzw. Supremum vertauschen?
- 11. Wie kann man Volumina von Körpern bestimmen? Wie berechnest Du speziell das Volumen der 3-dimensionalen Kugel?