Basic Questions of Dynamical Systems

- 1. What is the definition of a flow Φ_t on \mathbb{R}^N ?
- 2. What is the definition of an evolution $\Psi_{t,s}$ on \mathbb{R}^N ?
- 3. Which differential equation is associated to an evolution $\Psi_{t,s}$ and in what sense does the evolution "solve" the equation?
- 4. How can an evolution $\Psi_{t,s}$ on a vector space \mathbb{R}^N be written as a flow? How can a flow Φ_t on a vector space \mathbb{R}^N be written as an evolution?
- 5. How are α and ω -limit sets of an initial value x_0 to a flow Φ_t defined?
- 6. What do we mean by equilibria, periodic orbits, heteroclinic orbits, and homoclinic orbits of a flow? What are their respective α and ω -limit sets?
- 7. How is a first integral of a vector field defined? When do we call a first integral regular?
- 8. Which sufficient conditions ensure the existence of a regular first integral of a planar vector field?
- 9. What is an Euler multiplier of a vector field? How does it change orbits and solutions of the vector field?
- 10. How can the period of a periodic solution of the pendulum equation

$$\ddot{x} + V'(x) = 0,$$

 $x \in \mathbb{R}$, be calculated?

- 11. What is an Hamiltonian vector field?
- 12. How do a flow Φ_t and the associated differential equation $\dot{x} = f(x)$ change under the coordinate transformation by a diffeomorphism $y = \Psi(x)$?
- 13. How can differential equations be solved by separation of variables? Formulate a theorem.
- 14. Formulate the parameter-dependent contraction-mapping theorem in a Banach space X. Include a statement about differentiability.
- 15. Formulate the theorem of Picard&Lindelöf on local existence and uniqueness of the solution to a differential equation.

- 16. How can the solution of the initial-value problem $\dot{x} = f(t, x)$, $x(t_0) = x_0$, be written as the fixed point of a map in a Banach space?
- 17. Let α, β, u be continuous, non-negative functions of $t \ge 0$, such that

$$u(t) \leq \alpha(t) + \int_0^t \beta(s)u(s) \,\mathrm{d}s,$$

for all $t \ge 0$. How can u(t) be estimated in terms of α, β ?

- 18. Let I be the maximal interval of existence of the solution $x(t; x_0)$ of a trajectory to a locally Lipschitz vector field f(x) with initial condition x_0 . Is I open? Is I closed? Can I be bounded? What happens to the solution at the boundary of I?
- 19. Which sufficient conditions ensure the existence of a global evolution to a nonautonomous vector field on \mathbb{R}^n ?
- 20. Give an example of a vector field with a solutions that blows up in finite time.
- 21. Consider the solution $x(t; t_0, x_0)$ to the initial-value problem

$$\dot{x} = f(t, x), \qquad x(t_0) = x_0,$$

with smooth vector field f. Which differential equation is solved by the partial derivative

$$v(t;t_0,\xi) := \frac{\partial}{\partial x_0} x(t;t_0,x_0)\xi$$

with respect to the initial condition x_0 ?

22. What is the Wronski-matrix evolution to a global solution x(t) of a smooth vector field

$$\dot{x} = f(t, x)?$$

Which differential equation is solved by the Wronski matrices?

23. What is the explicit flow to the linear differential equation

$$\dot{x} = Ax,$$

with a constant matrix A in complex Jordan normal form?

24. How can the linear differential equation

$$x^{(n)} + a_{n-1}x^{(n-1)} + \dots + a_1x' + a_0x = 0,$$

with $x \in \mathbb{C}$ and constant complex coefficients a_j , be solved by an exponential ansatz?

25. What is the solution of the inhomogeneous linear system

$$\dot{x}(t) = Ax(t) + b(t), \qquad x(t_0) = x_0$$

with constant matrix A and continuous function b?

- 26. Consider an arbitrary C^1 vector field $\dot{x} = f(x)$ with $f(x_0) \neq 0$. What is the normal form of the flow in a local neighborhood of x_0 ?
- 27. Formulate and prove the flow-box theorem.
- 28. How are stability and asymptotic stability of an equilibrium defined?
- 29. How is the asymptotic stability of an equilibrium related to the linearization of the vector field?
- 30. In which sense is the flow near a hyperbolic equilibrium locally equivalent to its linearization? Formulate a theorem.
- 31. When are two linear systems

$$\dot{x} = Ax, \qquad \dot{y} = By,$$

 $x, y \in \mathbb{R}^N$, called hyperbolic? When are they called C^0 flow equivalent? When are they called C^1 flow equivalent?

- 32. When do we call a set M positively invariant, negatively invariant, or invariant with respect to a given flow Φ_t ?
- 33. Let the forward orbit $\gamma^+(x_0)$ of x_0 under a flow in \mathbb{R}^N be bounded. Is the ω -limit set of x_0
 - (a) open,
 - (b) closed,
 - (c) bounded,
 - (d) compact,
 - (e) stable,
 - (f) asymptotically stable,
 - (g) unstable?

Why?

- 34. Let the forward orbit $\gamma^+(x_0)$ of x_0 under a flow in \mathbb{R}^N be bounded. Is the ω -limit set of x_0
 - (a) nonempty,
 - (b) finite,
 - (c) discrete,
 - (d) connected,
 - (e) positively invariant,
 - (f) negatively invariant,
 - (g) invariant?

Why?

- 35. How is a Lyapunov function of a vector field defined? When do we call a Lyapunov function strict?
- 36. How does a Lyapunov function restrict possible ω -limit sets of a flow?
- 37. Formulate the invariance principle of LaSalle.
- 38. How are stability and asymptotic stability of a nonempty, compact, invariant set defined?
- 39. What is an attractor?
- 40. Formulate the theorem of Poincaré & Bendixson on ω -limit sets of bounded orbits of planar vector fields.
- 41. What is a limit cycle?
- 42. Formulate the criterion of Bendixson on the non-existence of periodic orbits of planar vector fields.
- 43. How many periodic orbits can a flow without equilibria on the plane possess?