Homework assignment

Dynamical Systems II

Bernold Fiedler, Stefan Liebscher http://dynamics.mi.fu-berlin.de/lectures/ due date: Thursday, Feb 10, 2011

(As usual, solve (at least) 2 problems, get 1 right.)

Problem 49: Consider a vector field $f : \mathbb{R}^n \to \mathbb{R}^n$ of the flow φ_t with equilibrium $x_0 = 0$. Let $R : \mathbb{R}^n \to \mathbb{R}^n$ be a linear involution $(R \circ R = \mathrm{id})$. Assume that the vector field f is equivariant under the symmetry R, that is

$$f \circ R = R \circ f.$$

(i) Let the assumptions of the theorem on the existence of a global center manifold in $x_0 = 0$ be satisfied. Prove that the center manifold $W^c(x_0)$ inherits the symmetry of the vector field, that is

$$R(W^c) = W^c.$$

(ii) Let the assumptions of the theorem on the existence of a *local* center manifold in $x_0 = 0$ be satisfied. Prove that there exists a symmetric local center manifold $W_{\text{loc}}^c(x_0)$, i.e.

$$R(W_{\rm loc}^c) = W_{\rm loc}^c.$$

Problem 50: Consider again the previous problem. Explain that the reduced vector field on the (symmetric) center manifold inherits the symmetry, i.e. it is equivariant under R restricted to the center eigenspace.

Then consider the vector field

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = f(x,y) = \begin{pmatrix} 0 & 0 \\ 0 & B \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + g(x,y),$$

with $x \in \mathbb{R}$, $y \in \mathbb{R}^{N-1}$, an isolated equilibrium (x, y) = (0, 0), some hyperbolic matrix B, and C^1 -terms $g(x, y) = \mathcal{O}(|x|^2 + ||y||^2)$ of higher order. Assume that f is symmetric under the reflection at the y-hyperplane,

 $f \circ R = R \circ f$ with $R = \text{diag}(-1, 1, \dots, 1)$.

Show that in a local center manifold either $\omega(x, y) = 0$ for all nonzero (x, y) or $\alpha(x, y) = 0$ for all nonzero (x, y).

Problem 51: Discuss the "cusp bifurcation"

$$\dot{x} = x^3 + \lambda x + \mu, \qquad x, \lambda, \mu \in \mathbb{R}.$$

In particular, determine number and stability of equilibria for all parameters (λ, μ) and the parameter curves along which degenerate equilibria (i.e. saddle-node bifurcations) occur.

Problem 52: Consider the linear system

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -\lambda_1 x \\ -\lambda_2 y \end{pmatrix}$$

with $0 \leq \lambda_1 \leq \lambda_2$. Determine all flow-invariant manifolds tangential to the eigenspace E_{λ_1} and their smoothness class \mathcal{C}^k depending on λ_1 , λ_2 .

Relate your observations to the question of regularity of invariant manifolds corresponding to general eigenvalue splittings

$$\Re \operatorname{e} \operatorname{spec} A|_{E^s} \leq -\beta_- < -\eta_- \leq \Re \operatorname{e} \operatorname{spec} A|_{E^c} \leq \eta_+ < \beta_+ \leq \Re \operatorname{e} \operatorname{spec} A|_{E^u}$$

of the linearization A at an equilibrium.

Problem 53: Consider the system

$$\dot{x}_{c} = Ax_{c} + f(x_{c} + x_{h}),$$

$$\dot{x}_{h} = Bx_{h} + g(x_{c} + x_{h}),$$

with $f, g \in C^{\kappa}$, $f(x) = \mathcal{O}(|x|^2)$, $g(x) = \mathcal{O}(|x|^2)$, and $\operatorname{spec}(A) \subset \mathbf{i}\mathbb{R}$, $\operatorname{spec}(B) \cap \mathbf{i}\mathbb{R} = \emptyset$. Assume the existence of a local center manifold $x_{\mathrm{h}} = h(x_{\mathrm{c}})$, $h \in C^{\kappa}$.

Prove that the κ -th derivative of h is uniquely determined. Describe a method to calculate the Taylor expansion of h.

Hint: Compare the Taylor expansions of $Bh(x_c) + g(x_c + h(x_c))$ and $Dh(x_c) [Ax_c + f(x_c + h(x_c))]$ and use the fact that $h(x_c) = \mathcal{O}(|x_c|^2)$.