Homework assignment

 Dynamical Systems II

 Dynamical Systems II
 Bernold Fiedler, Stefan Liebscher http://dynamics.mi.fu-berlin.de/lectures/

 due date: Thursday, Feb 10, 2011

 due date: Thursday, Feb 10, 2011}
(As usual, solve (at least) 2 problems, get 1 right.)

Problem 49: Consider a vector field $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ of the flow φ_{t} with equilibrium $x_{0}=0$. Let $R: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear involution ($R \circ R=\mathrm{id}$). Assume that the vector field f is equivariant under the symmetry R, that is

$$
f \circ R=R \circ f
$$

(i) Let the assumptions of the theorem on the existence of a global center manifold in $x_{0}=0$ be satisfied. Prove that the center manifold $W^{c}\left(x_{0}\right)$ inherits the symmetry of the vector field, that is

$$
R\left(W^{c}\right)=W^{c} .
$$

(ii) Let the assumptions of the theorem on the existence of a local center manifold in $x_{0}=0$ be satisfied. Prove that there exists a symmetric local center manifold $W_{\text {loc }}^{c}\left(x_{0}\right)$, i.e.

$$
R\left(W_{\mathrm{loc}}^{c}\right)=W_{\mathrm{loc}}^{c} .
$$

Problem 50: Consider again the previous problem. Explain that the reduced vector field on the (symmetric) center manifold inherits the symmetry, i.e. it is equivariant under R restricted to the center eigenspace.

Then consider the vector field

$$
\binom{\dot{x}}{\dot{y}}=f(x, y)=\left(\begin{array}{ll}
0 & 0 \\
0 & B
\end{array}\right)\binom{x}{y}+g(x, y),
$$

with $x \in \mathbb{R}, y \in \mathbb{R}^{N-1}$, an isolated equilibrium $(x, y)=(0,0)$, some hyperbolic matrix B, and C^{1}-terms $g(x, y)=\mathcal{O}\left(|x|^{2}+\|y\|^{2}\right)$ of higher order. Assume that f is symmetric under the reflection at the y-hyperplane,

$$
f \circ R=R \circ f \quad \text { with } \quad R=\operatorname{diag}(-1,1, \ldots, 1) \text {. }
$$

Show that in a local center manifold either $\omega(x, y)=0$ for all nonzero (x, y) or $\alpha(x, y)=0$ for all nonzero (x, y).

Problem 51: Discuss the "cusp bifurcation"

$$
\dot{x}=x^{3}+\lambda x+\mu, \quad x, \lambda, \mu \in \mathbb{R} .
$$

In particular, determine number and stability of equilibria for all parameters (λ, μ) and the parameter curves along which degenerate equilibria (i.e. saddle-node bifurcations) occur.

Problem 52: Consider the linear system

$$
\binom{\dot{x}}{\dot{y}}=A\binom{x}{y}=\binom{-\lambda_{1} x}{-\lambda_{2} y}
$$

with $0 \leq \lambda_{1} \leq \lambda_{2}$. Determine all flow-invariant manifolds tangential to the eigenspace $E_{\lambda_{1}}$ and their smoothness class \mathcal{C}^{k} depending on λ_{1}, λ_{2}.
Relate your observations to the question of regularity of invariant manifolds corresponding to general eigenvalue splittings
$\left.\Re \mathrm{e} \operatorname{spec} A\right|_{E^{s}} \leq-\beta_{-}<-\eta_{-} \leq\left.\Re \mathrm{e} \operatorname{spec} A\right|_{E^{c}} \leq \eta_{+}<\beta_{+} \leq\left.\Re \mathrm{e} \operatorname{spec} A\right|_{E^{u}}$ of the linearization A at an equilibrium.

Problem 53: Consider the system

$$
\begin{aligned}
& \dot{x}_{\mathrm{c}}=A x_{\mathrm{c}}+f\left(x_{\mathrm{c}}+x_{\mathrm{h}}\right), \\
& \dot{x}_{\mathrm{h}}=B x_{\mathrm{h}}+g\left(x_{\mathrm{c}}+x_{\mathrm{h}}\right),
\end{aligned}
$$

with $f, g \in C^{\kappa}, f(x)=\mathcal{O}\left(|x|^{2}\right), g(x)=\mathcal{O}\left(|x|^{2}\right)$, and $\operatorname{spec}(A) \subset \mathbf{i R}, \operatorname{spec}(B) \cap \mathbf{i R}=\emptyset$. Assume the existence of a local center manifold $x_{\mathrm{h}}=h\left(x_{\mathrm{c}}\right), h \in C^{\kappa}$.

Prove that the κ-th derivative of h is uniquely determined. Describe a method to calculate the Taylor expansion of h.
Hint: Compare the Taylor expansions of $B h\left(x_{\mathrm{c}}\right)+g\left(x_{\mathrm{c}}+h\left(x_{\mathrm{c}}\right)\right)$ and $D h\left(x_{\mathrm{c}}\right)\left[A x_{\mathrm{c}}+f\left(x_{\mathrm{c}}+\right.\right.$ $\left.\left.h\left(x_{\mathrm{c}}\right)\right)\right]$ and use the fact that $h\left(x_{\mathrm{c}}\right)=\mathcal{O}\left(\left|x_{\mathrm{c}}\right|^{2}\right)$.

