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Basic Questions of Dynamical Systems 11

. What is a Poincaré section to a periodic orbit of a flow?
. What is a Poincaré map to a periodic orbit of a flow?

. Formulate the Floquet theorem for a non-autonomous, time periodic, linear differ-

ential equation.

. Formulate the Floquet theorem for an autonomous vector field, linearized at a pe-

riodic orbit.

. What are Floquet multipliers and Floquet exponents of a periodic orbits of an

autonomous vector field?

. Why do periodic orbits of an autonomous vector field possess a trivial Floquet

multiplier 17

How is the rotation number of an (orientation preserving) homeomorphism f : St —
St defined?

. How are existence and periods of periodic points related to the rotation number of

a homeomorphism f : St — S1?

. Formulate the theorem of Denjoy for C%-diffeomorphisms f : St — St

How are local/global stable and unstable manifolds on a hyperbolic equilibrium of
a vector field defined?

Formulate the theorem on the existence of local stable and unstable manifolds to a
hyperbolic equilibrium of a vector field.

Formulate the theorem on the existence of local stable and unstable manifolds to a
hyperbolic fixed point of a diffeomorphism.

Are stable and unstable manifolds to a hyperbolic equilibrium unique? What are
the tangent spaces to stable and unstable manifolds at the equilibrium?

What is the (Bernoulli) shift on N symbols? Define the shift space, its topology,
and the shift map.
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How can we construct
(a) periodic orbits of every period
(b) a dense set of periodic orbits
(c) a dense orbit

for the shift on 2 symbols?

How does the shift on 2 symbols illustrate recurrence as well as sensitive dependence
on initial conditions?

What is the Smale horseshoe?
Formulate the theorem on the embedding of the shift into a C° horseshoe.
Formulate the theorem on the embedding of the shift into a C! horseshoe.

Sketch a horseshoe construction for the bouncing-ball map

Dpy1 = Pp A+ vy,
Vpr1 = Vg — ycos(Py + vg),

under a suitable assumption on +.

How is a hyperbolic structure defined?

What is a transverse homoclinic point of a diffeomorphism?
Formulate the A-lemma.

How does a transverse homoclinic point give rise to shift dynamics? Sketch the
relevant picture.

What is the Plykin attractor?
How is C! structural stability of a diffeomorphism defined?
Give at least two examples of structurally stable diffeomorphisms of the 2-torus.

Sketch the geodesic flow on the Lobachevsky plane. What are the horocycles? What
is their dynamic significance?

What is a strange attractor? Sketch an example and list relevant properties.
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39.

Formulate Brouwer’s fixed-point theorem.

How is the local center manifold to a non-hyperbolic equilibrium of a vector field
defined?

Formulate the theorem on the existence of a local center manifold to a non-hyperbolic
equilibrium of a vector field.

Formulate the theorem on the existence of a local center manifold to a non-hyperbolic
fixed point of a diffeomorphism.

Under which assumptions on the vector field does a global center manifold to a
non-hyperbolic equilibrium exist? Is the global center manifold unique?

Is the local center manifold to a non-hyperbolic equilibrium unique? What is the
tangent space to a C' center manifold at the equilibrium?

How are the local center-stable and center-unstable manifolds to a non-hyperbolic
equilibrium of a vector field defined? When do they exist?

Let A be the linearization of a C! vector field on R™ at the equilibrium z = 0.
Suppose the only purely imaginary eigenvalue of A is a simple eigenvalue zero. Can
the vector field possess periodic orbits arbitrarily near z = 07

Let A be the linearization of a C! vector field on R" at the equilibrium z = 0.
Suppose the only purely imaginary eigenvalues of A are +i, both simple. Can the
vector field possess periodic orbits arbitrarily near x = 07

How can the (global) center manifold be written as a fixed point of a contraction
map on a suitable function space? Define the space and the contraction map.



