Homework assignment

Dynamical Systems III

Bernold Fiedler, Stefan Liebscher
http://dynamics.mi.fu-berlin.de/lectures/
due date: Friday, June 24, 2011, 13:00
(As usual, solve (at least) 2 problems, get 1 right.)

Problem 37: James Watt's centrifugal governor yields the normalized equation

$$
\ddot{\theta}=\Omega \sin 2 \theta-\sin \theta-\nu \dot{\theta}
$$

Here, Ω denotes the (normalized) angular velocity, θ denotes the angle of the lever arm, and ν is a friction coefficient.

Which (fixed) values of Ω give rise to a Hopf bifurcation at $(\nu, \theta)=(0,0)$? Discuss the resulting dynamics and implications for the steam engine.

Problem 38: Consider an interation $x_{n+1}=h\left(\lambda, x_{n}\right), h(\lambda, 0)=0, \lambda \in \mathbb{R}^{2}, x \in \mathbb{R}^{N}$. Let $\mu(0)=\mathrm{e}^{ \pm i 2 \pi p / q}, p, q$ coprime, be an algebraically simple, non-resonant eigenvalue of the linearization $A(\lambda=0)$. Let the transversality condition $\operatorname{det} \mu^{\prime}(0) \neq 0$ hold.
Discuss the bifurcation equation of the subharmonic bifurcation,
$0=\mathrm{e}^{-\mathrm{i} \theta} \Phi\left(\lambda, r \mathrm{e}^{\mathrm{i} \theta}\right)=\left(\alpha_{0}(\lambda)+\alpha_{1}(\lambda) r^{2}+\cdots+\alpha_{[q / 2]}(\lambda) r^{2[q / 2]}\right) r+\beta(\lambda) \mathrm{e}^{-\mathrm{i} q \theta} r^{q-1}+\mathcal{O}\left(r^{q-1}\right)$, for $q \geq 5, \beta(0) \neq 0$. Note that $\alpha(\lambda)=\mu(0)-\mu(\lambda)+\mathcal{o}(\lambda)$.
Extra credit: How about $q \leq 4$?

Problem 39: Consider the reversible vector field

$$
\dot{x}=f(x) \in \mathbb{R}^{N}, \quad f(R x)=-R f(x),
$$

with linear involution $R, R^{2}=\mathrm{id}$.
(i) Prove that every orbit $x(\cdot)$ with $x(0), x(T) \in \operatorname{Fix}(R)$ and $x(0) \neq x(T)$ is periodic. Determine its period. Such orbits are called reversible periodic orbits.
(ii) Let $x(\cdot)$ be a reversible periodic orbits. Prove that every Floquet multiplier μ of $x(\cdot)$ is accompanied by Floquet multipliers $\mu^{-1}, \bar{\mu}$, and $\bar{\mu}^{-1}$.

Problem 40: Consider the space

$$
X=\mathbb{R}^{n q}=\left\{\left(x_{k}\right)_{k \in \mathbb{Z}} ; \forall k x_{k}=x_{k+q} \in \mathbb{R}^{n}\right\}
$$

and the map

$$
f: X \rightarrow X, \quad(f(x))_{k}=x_{k+1}-h\left(x_{k}\right),
$$

for a given map $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. The map

$$
S: X \rightarrow X, \quad(S x)_{k}=x_{k+1}
$$

generates the action of the group \mathbb{Z}_{q} on X.
(i) Prove that f is equivariant with respect to \mathbb{Z}_{q}.
(ii) Prove that the projection

$$
Q: X \rightarrow X, \quad(Q x)_{k}=\left\langle e_{(\ell)}, y\right\rangle e_{(r)}=\left(\frac{1}{q} \sum_{j=0}^{q-1} \bar{\mu}_{0}^{j} \bar{y}_{(\ell)}^{\mathrm{T}} x_{j}\right) \mu_{0}^{k} y_{(r)}
$$

is equivariant respect to \mathbb{Z}_{q}. Here $\mu_{0}=\mathrm{e}^{ \pm \mathrm{i} 2 \pi p / q}$ is the critical eigenvalue of the subharmonic bifurcation as introoduced in class, $y_{(\ell)}, y_{(r)}$ are the associated eigenvectors.

