|
Summer 2011
Seminar on Bifurcation Theory (Verzweigungstheorie)
Prof. Dr. Bernold Fiedler,
Dr. Stefan Liebscher
Friday, 14:15, room 140, Arnimallee 7, rear building
Inhalt
Based on (and going beyond) the course Dynamical Systems II,
we want to study the behaviour of parameter dependent dynamical systems.
Particular emphasis is on homoclinic bifurcation and the Newhouse phenomenon.
This constitutes on of the "paths into chaos".
Aufbauend auf der Vorlesung Differentialgleichungen II
aus dem vergangenen Semester wollen wir das Verhalten
parameterabhängiger dynamischer Systeme studieren.
Dabei wollen wir uns insbesondere auf homokline Verzweigungen
als einen der "Wege ins Chaos" konzentrieren.
References
- J. Palis & F. Takens:
Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations,
Cambridge Univ. Press, 1993.
Target audience
Students of semesters 6-8, students of the BMS (talks can be given in German and/or English)
Prerequisites
Analysis I-III, Dynamical Systems I-II
attendance of Dynamical Systems III
this semester recommended
Prospects
Bachelor, Master and Diploma theses
Topics
Introduction & basic concepts [1-2 talks]
- References:
Palis & Takens, ch. 0 (possibly 1, 2)
- Scope:
limit sets, attractors, nonwandering sets, chain recurrence, basic sets,
continuation of basic sets,
hyperbolicity, structural stability, transversality,
Axiom A, Anosov systems, Morse-Smale systems, chaos
Cascades of homoclinic bifurcations & scaling [1-2 talks]
- References:
Palis & Takens, ch. 3
- Scope:
quadratic tangency, unfolding, cascades of tangencies, period doubling,
cascades of period doublings, scaling, quadratic maps
Dynamically defined Cantor sets [1 talk]
- References:
Palis & Takens, ch. 4.1, A.2
- Scope:
Cantor sets, dynamic definition, stable foliations, Markov partitions,
Markov partitions for 2-d Cantor sets, bounded distortion, self-similarity
Global properties of Cantor sets [1-2 talks]
- References:
Palis & Takens, ch. 4.2
- Scope:
Hausdorff dimension, limiting capacity, thickness, denseness, measure,
gap lemma, relations
Local properties of Cantor sets [1 talk]
- References:
Palis & Takens, ch. 4.3
- Scope:
local Hausdorff dimension, local limiting capacity, local thickness,
local denseness, distance of Cantor sets, conjugacy,
continuous dependence of Hausdorff dimension, limiting capacity, thickness,
denseness
Homoclinic bifurcation [1-2 talks]
- References:
Palis & Takens, ch. 5
- Scope:
bifurcating family on S2, bifurcating set of small measure
Newhouse phenomenon [1-2 talks]
- References:
Palis & Takens, ch. 6
- Scope:
dense set of diffeomorphisms with homoclinic tangencies,
residual set of diffeomorphisms with infinitely many periodic sinks
|