Homework assignment

Infinite Dimensional Dynamical Systems

Bernold Fiedler, Stefan Liebscher http://dynamics.mi.fu-berlin.de/lectures/ due date: Tuesday, May 15, 2012

Problem 13: Consider the problem

 $u_t = u_{xx} + f(x, u, u_x),$ with Neumann boundary conditions.

Sturm blocking 1 excludes a heteroclinic orbit $v_- \rightsquigarrow v_+$ between equilibria v_\pm , if there exists an equilibrium w, with w(0) strictly between $v_-(0)$ and $v_+(0)$, such that $z(v_- - w) = z(v_+ - w)$.

Show that Sturm blocking 1, at x = 0, is equivalent to Sturm blocking 1, at x = L.

Problem 14: Consider the problem

 $u_t = u_{xx} + f(x, u, u_x),$ with Neumann boundary conditions.

Assume v_{\pm} are hyperbolic equilibria, with $i(v_{-}) = i(v_{+}) + 1$. Assume they possess a heteroclinic orbit, $v_{-} \stackrel{u(t)}{\leadsto} v_{+}$. Show

$$z(u(t) - v_{-}) = z(u(t) - v_{+}) = z(v_{+} - v_{-}) = i(v_{+}),$$

for all $t \in \mathbb{R}$.

Problem 15: Show that the pendulum flow

$$v_{xx} + f(v) = 0$$

for the Chafee-Infante nonlinearity $f(v) = v(1 - v^2)$ is not global. Can we still find all equilibria of

$$u_t = u_{xx} + f(u)$$
, with Neumann boundary conditions,

by the shooting curve γ , i.e. the image at x = L in the (v, v_x) phase plane of the v-axis at x = 0 under the maximally defined local ODE flow?

Problem 16: Consider a compact, strongly continuous semiflow Φ^t on a Banach space X. The ω -limit set

$$\omega(u_0) = \bigcap_{t \ge 0} \operatorname{clos} \gamma^+(\Phi^t(u_0))$$

of a bounded forward trajectory $\gamma^+(u_0)$ is

(i) nonempty, (ii) compact, (iii) connected, (iv) invariant.

Show three of these four properties!