Homework assignment

Infinite Dimensional Dynamical Systems

Bernold Fiedler, Stefan Liebscher http://dynamics.mi.fu-berlin.de/lectures/

due date: Tuesday, May 29, 2012

Problem 21: Consider the problem

 $u_t = u_{xx} + f(x, u, u_x),$ with Neumann boundary conditions.

Assume hyperbolicity of all N = 2m + 1 PDE equilibria, global ODE flow, and ODE dissipativity, i.e. f(x, v, 0)v < 0 for large |v|.

- (i) Show that $i(v_n) \leq m$, for all $n = 1, \ldots, N$
- (ii) Show that $\max_n i(v_n) = m$ if, and only if, the shooting permutation σ coincides with σ of the Chafee-Infante problem!

Problem 22: Consider the problem

 $u_t = u_{xx} + f(x, u, u_x),$ with Neumann boundary conditions.

Assume hyperbolicity of all PDE equilibria, global ODE flow, and ODE dissipativity, i.e. f(x, v, 0)v < 0 for large |v|.

Show that

$$\sigma = \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 5 & 4 & 3 & 6 & 7 \end{array}\right) = (35) \in S_7$$

is **not** a Sturm permutation.

Problem 23: [Strong monotonicity] Consider the problem

$$u_t = u_{xx} + f(x, u, u_x), \qquad f \in \text{Sturm}^{\mathcal{N}}(x, u, u_x).$$

Let $u_1(t,x), u_2(t,x)$ be solutions with

$$u_1(0,x) > u_2(0,x)$$
 for all x.

Show that

$$u_1(t,x) > u_2(t,x)$$
 for all x and $t \ge 0$.

Problem 24: Construct a dissipative meander permutation which is **not** Morse, and hence does **not** arise via ODE shooting.