Homework assignment

Infinite Dimensional Dynamical Systems

Bernold Fiedler, Stefan Liebscher http://dynamics.mi.fu-berlin.de/lectures/ due date: Tuesday, June 05, 2012

Problem 25: Are

$$\sigma_{1} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 4 & 5 & 6 & 7 & 8 & 3 & 2 & 9
\end{pmatrix} = (2468)(357)$$

$$\sigma_{2} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 6 & 7 & 8 & 5 & 2 & 3 & 4 & 9
\end{pmatrix} = (26)(37)(48)$$

Sturm permutations? Determine the associated connection graphs C_1 and C_2 . Are C_1 and C_2 isomorphic?

Problem 26: Let $v_{\pm} \in \mathcal{E}_f$ be equilibria of a Sturm PDE, $f \in \text{Sturm}^{\mathcal{N}}(x, u, u_x)$, with adjacent boundary values at x = 0 or at x = L.

Show that v_{\pm} possess a heteroclinic orbit connecting them.

Problem 27: In a Sturm PDE, $f \in \text{Sturm}^{\mathcal{N}}(x, u, u_x)$, let $\underline{v}, \overline{v}$ denote the equilibria with lowest and highest boundary value at x = 0, respectively. Let w denote any other equilibrium. Prove or disprove,

$$v(x) < w(x) < \overline{v}(x), \quad \text{for all } x \in [0, L].$$

Extra credit: Solve this problem in at least two quite different ways.

Problem 28: Consider the permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 1 & 10 & 5 & 6 & 7 & 8 & 9 & 2 & 3 & 4 & 11 \end{pmatrix} = (210468)(3579).$$

- (i) Show that σ is Sturm.
- (ii) Determine the connection graph \mathcal{C} of σ .
- (iii) Show that C is non-planar.