Homework assignment

Infinite Dimensional Dynamical Systems

Bernold Fiedler, Stefan Liebscher http://dynamics.mi.fu-berlin.de/lectures/

due date: Tuesday, June 12, 2012

Problem 29: Are

$$\sigma_{1} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 4 & 5 & 8 & 7 & 6 & 3 & 2 & 9
\end{pmatrix} = (248)(357)$$

$$\sigma_{2} = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 6 & 7 & 8 & 5 & 4 & 3 & 2 & 9
\end{pmatrix} = (2648)(37)$$

Sturm permutations? Determine the associated connection graphs C_1 and C_2 . Are C_1 and C_2 isomorphic?

Problem 30: [Suspension I] For any permutation $\sigma \in S_N$ define the suspension $\hat{\sigma} \in S_{N+2}$ as

$$\hat{\sigma}(n) := \begin{cases} N+2-\sigma(n-1), & \text{for } 2 \le n \le N+1, \\ n, & \text{for } n \in \{1, N+2\}. \end{cases}$$

- (i) Show that $\hat{\sigma}$ is a dissipative meander, whenever σ is
- (ii) Show that the Morse numbers satisfy

$$i_n^{\hat{\sigma}} = i_{n-1}^{\sigma} + 1, \quad \text{for } 2 \le n \le N + 1.$$

In particular, any dissipative meander σ becomes Sturm after finitely many suspensions.

Problem 31: [Suspension II]

(i) Assume $\sigma \in S_N$ is a Sturm permutation with suspension $\hat{\sigma} \in S_{N+2}$. Show that

$$z^{\hat{\sigma}}(v_n - v_m) = \begin{cases} z^{\sigma}(v_{N+2-n} - v_{N+2-m}) + 1, & \text{for all } 2 \le m < n \le N+1, \\ 0, & \text{for } 0 = m < n \text{ or } m < n = N+2. \end{cases}$$

(ii) Describe the resulting connection graph $\hat{\mathcal{C}}$ of $\hat{\sigma}$, by comparision with the connection graph \mathcal{C} of the Sturm permutation σ .

Problem 32: [Suspension III] Let $\hat{\sigma} \in S_{N+2}$ be a Sturm permutation, $N \geq 1$. Show that $\hat{\sigma}$ is the suspension of a Sturm permutation $\sigma \in S_N$ if, and only if, \hat{i}_1 and \hat{i}_{N+2} are the only zero Morse numbers of $\hat{\sigma}$.