Homework assignment **Differentialgleichungen II** Pavel Gurevich, Sergey Tikhomirov http://dynamics.mi.fu-berlin.de/lectures/12WS-Gurevich-PDE/ **due date: Wednesday, October 24, 2012**

For a function $u: \mathbb{R}^n \to \mathbb{R}, u \in \mathbb{C}^2$ we denote $\Delta u(x) = \sum_{i=1}^n u_{x_i x_i}(x)$.

Problem 1: (50 points) Determine the type of the following equations (linear, quasilinear, fully nonlinear)

- (i) $\Delta u = 0$.
- (ii) $u_{x_1} + u_{x_2x_2x_2x_2} = 0.$
- (iii) $u_t + uu_x = f(u)$.
- (iv) $u_t \Delta(u^2) = 0.$
- (v) div $((|\nabla u|)^{p-2}\nabla u), \quad p \ge 2.$

Problem 2: (100 points) Recall the integration by parts formula. Let $u, v : \mathbb{R}^n \to \mathbb{R}$, $u, v \in C^1(\overline{Q}), Q \subset \mathbb{R}^n$ an open set with C^1 boundary ∂Q . Then

$$\int_{Q} u_{x_{i}} v dx = -\int_{Q} u v_{x_{i}} dx + \int_{\partial Q} u v \nu_{i} dS,$$

where ν is the outer unit normal on the boundary. Prove the following formulas for $u, v \in C^2(\overline{Q})$:

(i)

$$\int_{Q} \Delta u dx = \int_{\partial Q} \frac{\partial u}{\partial \nu} dS.$$

(ii)

$$\int_{Q} v \Delta u dx = \int_{\partial Q} \frac{\partial u}{\partial \nu} v dS - \int_{Q} \nabla v \nabla u dx.$$

(iii)

$$\int_{U} u\Delta v - v\Delta u dx = \int_{\delta U} u \frac{\partial v}{\partial \nu} - v \frac{\partial u}{\partial \nu}.$$

Problem 3: (150 points)

(i) Solve the following equation using characteristics

$$x_1u_{x_1} + x_2u_{x_2} = 2u, \quad u(x_1, 1) = g(x_1),$$

for $x \in Q$, where $Q = \{x_2 \ge 1\}$

- (ii) Write the characteristics ODE for the following PDE
 - (a) $2u_t = u_x + xu$ (b) $u_t + (1 + x^2)u_x - u = 0.$