Homework assignment

Differentialgleichungen II

Pavel Gurevich, Sergey Tikhomirov

http://dynamics.mi.fu-berlin.de/lectures/12WS-Gurevich-PDE/

due date: 14:00, Wednesday, November 21, 2012

Problem 15:

- (i) For which $\alpha > 0$ does the function $f(x) = |x|^{\alpha}$ belong to $L^2(Q)$, where
 - (a) $Q = \{x \in \mathbb{R}^n : |x| < 1\},\$
 - (b) $Q = \{x \in \mathbb{R}^n : |x| > 1\}.$
- (ii) Does the function $f(x) = \frac{\sin x}{x^{5/4}}$ belong to $L^2(0,1)$?
- (iii) For which α is the function $f(x)=\frac{x_1x_2...x_n}{|x|^{\alpha}}$ Lebesgue integrable over the domain $Q=\{x\in R^n: |x|<1\}$?

Hint: A function f(x) is Lebesgue integrable if and only if |f(x)| is Lebesgue integrable.

Problem 16: Find all the eigenvalues and all the corresponding eigenfunctions of the following spectral problem

$$-e''(x) = \lambda e(x), \quad x \in (0, l),$$

$$e'(0) = 0, \quad e(l) = 0,$$
(1)

where l > 0.

Hint: Use the general form of the solution for equation (1).

Problem 17: Find the solutions of the following initial boundary-value problems

- (i) $u_{tt} = u_{xx} + 2$, $x \in (0, l)$, $u|_{x=0} = 0$, $u|_{x=l} = 0$, $u|_{t=0} = u_t|_{t=0} = 0$;
- (ii) $u_{tt} + 2u_t = u_{xx} u$, $x \in (0, \pi)$, $u_x|_{x=0} = u|_{x=\pi} = 0$, $u|_{t=0} = 0$, $u_t|_{t=0} = x$.

Problem 18: Find the solutions of the following initial boundary-value problems

- (i) $u_t = u_{xx}$, $x \in (0,1)$, $u_x|_{x=0} = u_x|_{x=1} = 0$, $u|_{t=0} = x^2 1$;
- (ii) $u_t = u_{xx} + u + 2\sin(2x)\sin x$, $x \in (0, \pi/2)$, $u|_{x=0} = u|_{x=\pi/2} = 0$, $u|_{t=0} = 0$.