Homework assignment

Differentialgleichungen II

Pavel Gurevich, Sergey Tikhomirov

http://dynamics.mi.fu-berlin.de/lectures/12WS-Gurevich-PDE/

due date: 14:00, Tuesday-Wednesday, November 27-28, 2012

Problem 19: Find the solutions of the following initial boundary-value problems

(i)
$$u_{xx} = u_{tt}$$
, $0 < x < 1$, $u|_{x=0} = t+1$, $u|_{x=1} = t^3+2$, $u|_{t=0} = x+1$, $u_t|_{t=0} = 0$.

(ii)
$$u_t = u_{xx} + u - x + 2\sin 2x \cos x$$
, $0 < x < \pi/2$, $u|_{x=0} = 0$, $u_x|_{x=\pi/2} = 1$, $u|_{t=0} = x$.

Problem 20:

(i) Consider the following spectral problem

$$\Delta u(x,y) = -\lambda u(x,y), \quad x \in (0,K), y \in (0,L),$$
 (1)

where $K, L > 0, \lambda \in R$, with the following boundary conditions

(a)
$$u|_{x=0} = u|_{x=K} = 0$$
, $u|_{y=0} = u|_{y=L} = 0$,

(b)
$$u_x|_{x=0} = u_x|_{x=K} = 0$$
, $u_y|_{y=0} = u_y|_{y=L} = 0$.

Find all eigenfunctions (and corresponding eigenvalues) of the form

$$u(x,y) = f(x)g(y). (2)$$

Bonus: Prove that all eigenfunctions of the above spectral problem have the form (2).

(ii) Find the solutions of the following initial boundary-value problems

(a)
$$u_{tt} = \Delta u \quad (0 < x < \pi, \ 0 < y < \pi),$$

$$u|_{x=0} = u|_{x=\pi} = 0, \ u|_{y=0} = u|_{y=\pi} = 0,$$

$$u|_{t=0} = 3\sin x \sin 2y, \quad u_t|_{t=0} = 5\sin 3x \sin 4y.$$

(b)
$$u_t = \Delta u \quad (0 < x < \pi, \ 0 < y < 2\pi),$$

$$u_x|_{x=0} = u_x|_{x=\pi} = 0 \ u_y|_{y=0} = u_y|_{y=2\pi} = 0,$$

$$u|_{x=0} = 2\cos x(\cos y/2 + 1)^2.$$

Problem 21:

- (i) Prove that the Schwartz space is dense in
 - (a) $L_1(\mathbb{R}^n)$ (in the topology of $L_1(\mathbb{R}^n)$),
 - (b) $L_2(\mathbb{R}^n)$ (in the topology of $L_2(\mathbb{R}^n)$).
- (ii) Let $f \in L_2(\mathbb{R}^n)$. Denote $B_N = \{x \in \mathbb{R}^n : |x| < N\}$ and

$$F_N(\xi) = (2\pi)^{-n/2} \int_{B_N} e^{-ix\xi} f(x) dx.$$

Prove that the integral in the righthand side converges absolutely for any $\xi \in \mathbb{R}^n$, defines a function $F_N(\xi)$ from $L_2(\mathbb{R}^n)$ and

$$\|\hat{f} - F_N\|_{L_2(\mathbb{R}^n)} \to_{N \to \infty} 0.$$

Problem 22:

- (i) Prove or disprove that if $f \in L_1(\mathbb{R}^n)$ then $\hat{f}(\xi) \to 0$ as $|\xi| \to \infty$.
- (ii) Let $\phi(x) = e^{-|x|^2/2}$, $x \in \mathbb{R}^n$. Prove that $\hat{\phi}(\xi) = \phi(\xi)$.

Hint: Use that the integral of a complex analytic function along a closed contour equals 0.