Homework assignment

Differentialgleichungen II

Pavel Gurevich, Sergey Tikhomirov

http://dynamics.mi.fu-berlin.de/lectures/12WS-Gurevich-PDE/

due date: 14:00, Tuesday, December 4, 2012

Problem 23:

(i) Consider the equation

$$\Delta u(x) = f(x), \quad x \in Q,$$

where $Q = \{x \in \mathbb{R}^2 : |x| < 1\}$. Write a partial differential equation for the function $v(r,\varphi) = u(r\cos\varphi, r\sin\varphi)$.

(ii) Consider the equation

$$\Delta u(x) = f(|x|), \quad x \in Q,$$

where $Q = \{x \in \mathbb{R}^n : |x| < 1\}$. Assume that u(x) = v(|x|), where v is a real-valued function. Write an ordinary differential equation for the function v.

Problem 24:

(i) Find all the eigenvalues and all the corresponding eigenfunctions of the following spectral problem

$$-e''(x) = \lambda e(x), \quad x \in (0, l),$$

$$e(0) = e(l), \quad e'(0) = e'(l),$$
(1)

where $l=2\pi$.

(ii) Find a solution of

$$\Delta u(x) = 0, \quad x \in Q,$$

and

(a)
$$Q = \{x \in \mathbb{R}^2 : |x| < 1\}$$

$$u|_{\partial O} = g(\varphi),$$

(b)
$$Q = \{x \in \mathbb{R}^2 : 1/2 < |x| < 2\}$$

$$u|_{|x|=1/2} = g_1(\varphi),$$

$$u|_{|x|=2} = g_2(\varphi),$$

as a formal series

$$u = \sum_{j=1}^{\infty} u_j(r)e_j(\varphi),$$

where φ is a polar angle and g, g_1, g_2 are real-valued functions

Hint: Use (i). Note that in (a) the function should be bounded at 0.

Problem 25:

- (i) Find a function $f \in L_2(Q)$, $Q = \{x \in \mathbb{R}^2 : |x| < 1\}$ such that the generalized derivatives (from the space $L_{2,loc}(Q)$) f_{x_1} and f_{x_2} do not exist, but the generalized derivative $f_{x_1x_2}$ exists.
- (ii) In each of the following problems determine if the following generalized derivative (from the space $L_{2,loc}(Q)$) exists, and if yes find it.
 - (a) $\frac{\partial^2}{\partial x_1 \partial x_2} f(x)$, where $f(x) = |x_1 x_2|$ in $Q = \{x \in \mathbb{R}^2 : |x| < 1\}$.
 - (b) $\frac{\partial}{\partial x} f(x)$, where $f(x) = \sqrt{|x|}$ in $Q = \{x \in \mathbb{R}, |x| < 1\}$.
 - (c) $\frac{\partial}{\partial x} f(x)$ and $\frac{\partial^2}{\partial x^2} f(x)$, where

$$f(x) = \begin{cases} 0, & x < 0\\ \sin x & x \ge 0, \end{cases}$$

in $Q = \{x \in \mathbb{R}, |x| < 1\}.$

Problem 26: Let Q be a domain in \mathbb{R}^n .

- (i) Let $a \in C^k(\bar{Q})$ and let $|D^{\alpha}a(x)|$ be bounded for all $|\alpha| \leq k$. Prove that for any $f \in H^k(Q)$
 - (a) $(af)_{x_i} = a_{x_i}f + af_{x_i}$, where a_{x_i} is a classical derivative, $(af)_{x_i}$ and f_{x_i} are generalized derivatives.
 - (b) $af \in H^k(Q)$ and $||af||_{H^k(Q)} \le C||f||_{H^k(Q)}$, where C > 0 does not depend on f.
- (ii) Let $|\beta| \leq k$. Prove that

$$D^{\beta}: H^k(Q) \to H^{k-|\beta|}(Q)$$

is a bounded linear operator.

(iii) Let $f \in H^k(Q)$ and let f_h be its mollifier (h > 0). Prove that

$$||f_h - f||_{H^k(Q')} \to 0$$
, as $h \to 0$,

for any $Q' \subseteq Q$.