Homework assignment

Differentialgleichungen II

Pavel Gurevich, Sergey Tikhomirov http://dynamics.mi.fu-berlin.de/lectures/12WS-Gurevich-PDE/

due date: 14:00, Tuesday, December 18, 2012

Problem 31:

(i) For a real-valued function $f \in L_2(0,\pi)$ consider the sequence

$$b_k = \frac{2}{\pi} \int_0^{\pi} f(x) \sin kx \ dx.$$

Prove that the function f is from the space $\dot{H}^1(0,\pi)$ (Sobolev space with zero trace) if and only if the series $\sum_{k\geq 1} k^2 b_k^2$ converges. Prove that if $f\in \dot{H}^1(0,\pi)$ then the following equality holds

$$||f||_{\dot{H}^1(0,\pi)}^2 = \int_0^\pi (f^2 + f'^2) dx = \frac{\pi}{2} \sum_{k>0} (k^2 + 1) b_k^2.$$

(ii) Let $x = (x_1, x_2) = (r \cos \varphi, r \sin \varphi)$ and a real-valued function

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} r^k (a_k \cos k\varphi + b_k \sin k\varphi)$$

belong to $H^1(|x| < 1)$. Find the integral

$$\int_{|x|<1} (|\text{grad}f|^2 + |f|^2) dx$$

in terms of a_k, b_k .

Problem 32:

(i) Let Q be a bounded domain in R^n . Let $\rho \in C(\bar{Q})$ and $\rho(x) > \rho_0 > 0$. Prove that the expression

$$(f,g)_I = \int_Q \rho f \bar{g} \, dx \quad \text{for } f,g \in L_2(Q)$$
 (1)

defines a scalar product in $L_2(Q)$ which is equivalent to the standard scalar product $(f,g) = \int_{\mathcal{O}} f\bar{g} dx.$

(ii) Let Q be a bounded domain in R^n . Let $\rho \in C(\bar{Q})$ and $\rho(x) > 0$ for $x \in Q \setminus \{x_0\}$ and $\rho(x_0) = 0$ for some $x_0 \in Q$. Prove that expression (1) defines a scalar product which is not equivalent to the standard scalar product.

Problem 33: Let Q be a bounded domain in R^n and D be a bounded domain in R^{n-1} . Let $\varphi: D \to R$ be a C^1 function. Denote $\Gamma_{\delta} = \{(x', \phi(x') + \delta), \text{ with } x' \in D\}$. Assume that $\Gamma_{\delta} \subset Q$ for small enough δ . Let $f \in H^1(Q)$. Denote by $h_{\delta} \in L_2(\Gamma_{\delta})$ the trace of f on Γ_{δ} . Let $g_{\delta} \in L_2(\Gamma_0)$ is defined by $g_{\delta}(x) = h_{\delta}(x - (0, \delta))$. Prove that

$$\lim_{\delta \to 0} \|g_{\delta} - g_{0}\|_{L_{2}(\Gamma_{0})} = 0.$$

Problem 34: Let Q be a bounded domain and c > 0. Consider real-valued functions $q \in C(\bar{Q}), r \in C(\partial Q)$ satisfying inequality q(x), r(y) > c for all $x \in Q, y \in \partial Q$. Let p be a matrix-valued function continuous in \bar{Q} such that p(x) is a symmetric positively defined $n \times n$ matrix satisfying $(p(x)\xi,\xi) \geq c|\xi|^2$ for all $x \in Q$ and $\xi \in R^n$. Prove that the norm in $H^1(Q)$ defined by the following scalar product

$$(f,g) = \int_{Q} (qf\bar{g} + (p\nabla f, \nabla \bar{g})) dx + \int_{\partial Q} rf\bar{g} dS, \quad f,g \in H^{1}(Q),$$

is equivalent to the classical norm in $H^1(Q)$.