Homework assignment **Differentialgleichungen II** Pavel Gurevich, Sergey Tikhomirov http://dynamics.mi.fu-berlin.de/lectures/12WS-Gurevich-PDE/ **due date: 14:00, Tuesday, January 29, 2013**

Problem 47: Let

$$\mathcal{E}(x,t) = \frac{1}{(2\sqrt{\pi t})^n} e^{-\frac{|x|^2}{4t}}$$
(1)

be the Poisson kernel. Prove the following statements.

(i) For any t > 0 the following holds

$$\int_{R^n} \mathcal{E}(x,t) dx = 1$$

(ii) For any $\delta > 0$ the following holds

$$\lim_{t \to 0} \int_{R^n \setminus B_{\delta}(0)} \mathcal{E}(x, t) dx = 0.$$

Problem 48: Let $u \in C^{\infty}(\mathbb{R}^n \times [0, T])$ for some T > 0. Assume there exists L > 0 such that u(x, t) = 0 for |x| > L, $t \in [0, T]$. Denote

$$f(x,t) = u_t - \Delta u, \quad \varphi(x) = u(x,0).$$

Prove the Poisson formula using Fourier transform

$$u(x,t) = \int_0^t \int_{\mathbb{R}^n} \mathcal{E}(x-y,t-s) f(y,s) \, dy \, ds + \int_{\mathbb{R}^n} \mathcal{E}(x-y,t) \varphi(y) \, dy.$$

Problem 49: For each of the following problems find the solution

(i)
$$u_t = u_{xx} + 3t^2$$
; $u|_{t=0} = \sin x$, for $x \in R^1$, $t \ge 0$;
(ii) $8u_t = \Delta u + 1$; $u|_{t=0} = e^{-(x-y)^2}$, for $(x, y) \in R^2$, $t \ge 0$;
(iii) $u_t = 3\Delta u + e^t$; $u|_{t=0} = \sin(x - y - z)$, for $(x, y, z) \in R^3$, $t \ge 0$.

Problem 50: Consider a function $\varphi \in C(\mathbb{R}^n)$. Let a = 1.

(i) Assume that for some $\delta > 0$ there exists $M_{\delta} > 0$ such that $|\varphi(x)| \leq M_{\delta} e^{\delta |x|^2}$. Prove that for $t \in \left(0, \frac{1}{4a^2\delta}\right)$ and $x \in \mathbb{R}^n$ the function

$$u(x,t) = \int_{\mathbb{R}^n} \mathcal{E}(x-y,t)\varphi(y) \, dy \tag{2}$$

is well-defined and belongs to the class C^{∞} . Prove that u(x,t) solves the Cauchy problem

$$u_t = a^2 \Delta u, \quad u|_{t=0} = \varphi(x), \quad t \in \left(0, \frac{1}{4a^2\delta}\right).$$

(ii) Assume that the conditions of section (i) holds for any $\delta > 0$. Prove that the function u(x,t) defined by the same formula belongs to the class $C^{\infty}(\mathbb{R}^n \times \mathbb{R}^+)$ and solves the Cauchy problem

$$u_t = a^2 \Delta u, \quad u|_{t=0} = \varphi(x), \quad t \ge 0.$$
 (3)

(iii) Assume that there exists L > 0 such that $\varphi(x) = 0$ for |x| > L. Let u(x, t) be the solution of problem (3). Prove that for any T > 0, $\delta \in (0, \frac{1}{4a^2T})$ there exists M > 0 such that

 $u(x,t) \le M e^{-\delta |x|^2}, \quad x \in \mathbb{R}^n, \quad t \in (0,T).$

(iv) **Bonus:** Assume that $a \neq 1$. Find modification of the definition of $\mathcal{E}(x, y)$ such that formula (2) gives a solution of (3).