Homework assignment

Differentialgleichungen III

Pavel Gurevich, Eyal Ron

http://dynamics.mi.fu-berlin.de/lectures/13SS-Gurevich-Dynamics/

Tutorial discussion date: Friday, April 19, 2013, at 10:00

Problem 1: A semigroup of linear bounded operators T(t), $t \ge 0$, in a Banach space X is said to be a *strongly continuous* or C_0 *semigroup* if

$$T(t)u \to u$$
 as $t \to 0$ for all $u \in X$.

It is known that

(i) there is $\omega \in \mathbb{R}$ such that

$$||T(t)|| \le e^{\omega t} \quad \forall t \ge 0,$$

(ii) the generator of a strongly continuous semigroup is a linear closed densely defined operator.

Questions:

(i) (Continuity) Let T(t) be a strongly continuous semigroup. Prove that

$$T(t)u \to T(t_0)u$$
 as $t \to t_0$ for all $t_0 > 0$, $u \in X$.

(ii) (Commutation and differentiation) Let $L: X \to X$ be a generator of a strongly continuous semigroup T(t). Let $u \in D(L)$. Show that $T(t)u \in D(L)$ and

$$LT(t)u = T(t)Lu = \frac{d}{dt}T(t)u \quad \forall t \ge 0.$$

(iii) (Uniqueness) Let $L: X \to X$ be a generator of strongly continuous semigroups T(t) and S(t). Prove that

$$T(t) = S(t) \quad \forall t \ge 0.$$

Hint: differentiate G(s) = T(s)S(t-s).

(iv) (Shift) Let $L: X \to X$ be a generator of a strongly continuous semigroup T(t). Show that L + aI, $a \in \mathbb{C}$, generates the strongly continuous semigroup $e^{at}T(t)$.

Problem 2: Let $Q \subset \mathbb{R}^n$ be a bounded domain with $\partial Q \in C^2$. Consider the operator

$$A: L_2(Q) \to L_2(Q), \quad D(A) = \mathring{H}^1(Q) \cap H^2(Q),$$

 $Au = -\Delta u, \quad u \in D(A).$

Prove that A is sectorial.

Problem 3: Consider the operator A from Problem 2. Write explicit formulas for Au $(u \in D(A))$ and $e^{-At}v$ $(v \in L_2(Q))$ via the Fourier representation with respect to eigenfunctions of A.

Hint: use the integral representation of e^{-At} from the lecture.