Homework assignment

Differentialgleichungen III Problem Sheet 3

Pavel Gurevich, Eyal Ron

http://dynamics.mi.fu-berlin.de/lectures/13SS-Gurevich-Dynamics/

Tutorial discussion date: Friday, May 3, 2013, at 10:00

Problem 1: Let $\alpha \in (0,1)$. Use the Cauchy integral to prove the formula from the lecture

$$A^{-\alpha} = \frac{\sin \pi \alpha}{\pi} \int_0^\infty \lambda^{-\alpha} (\lambda + A)^{-1} d\lambda$$

when A is a positive real number.

Problem 2: Let $A: L^2(Q) \to L^2(Q)$ be the "minus Laplace" operator defined in question 2 in problem sheet 1. Find the domain of A^{α} , $\alpha > 0$. Represent $A^{\alpha}u(x)$, $u \in D(A^{\alpha})$, via the Fourier series with respect to the eigenfunctions of A.

Problem 3: Let A be a sectorial operator such that $Re \, \sigma(A) > \delta > 0$. Prove each of the following properties for fractional powers of A.

- (i) If $\alpha \geq \beta > 0$, then $D(A^{\alpha}) \subset D(A^{\beta})$.
- (ii) If $\alpha > 0$, A^{α} is closed and densely defined. **Hint:** Use the fact that A^n is densely defined for every natural n (see also **Bonus**).
- (iii) $A^{\alpha}A^{\beta} = A^{\alpha+\beta}$ on $D(A^{\gamma})$, where $\gamma = \max(\alpha, \beta, \alpha + \beta)$.
- (iv) $A^{\alpha}e^{-At} = e^{-At}A^{\alpha}$ on $D(A^{\alpha}), t > 0$.

Bonus: Prove that $\bigcap_{n=1}^{\infty} D(A^n)$ is dense in X.

Problem 4:

(i) Let A be a sectorial operator such that $\operatorname{Re} \sigma(A) > \delta > 0$. Let $\alpha \in (0,1)$. Show that if $u \in D(A)$ then $||A^{\alpha}u|| \leq C||Au||^{\alpha}||u||^{1-\alpha}$.

Hint: 1. Estimate $||A^{-\beta}v||$, splitting the integral into two: $\int_0^{\varepsilon} + \int_{\varepsilon}^{\infty}$.

- 2. Minimize over $\varepsilon > 0$.
- 3. Set $\alpha = 1 \beta$ and v = Au.
- (ii) Conclude from (i) that $||A^{\alpha}u|| \leq \varepsilon ||Au|| + C' \varepsilon^{-\alpha/(1-\alpha)}||u||$ for all $\varepsilon > 0$. (Here C, C' are constants independent of u. Do they depend on α ?)