## Homework assignment

## Differentialgleichungen III Problem Sheet 4

Pavel Gurevich, Eyal Ron

http://dynamics.mi.fu-berlin.de/lectures/13SS-Gurevich-Dynamics/Tutorial discussion date: Friday, May 17, 2013, at 10:00am

## Problem 1:

- (i) Let A, B be sectorial operators such that Re  $\sigma(A)$ , Re  $\sigma(B) > 0$ . Show that if  $(A B)A^{-\beta}$  is bounded for  $\beta \in [0, 1)$ , then  $A^{\alpha}B^{-\alpha}$  and  $B^{\alpha}A^{-\alpha}$  are bounded for  $\alpha = 0, 1$ .
- (ii) Let A be a sectorial operator with Re  $\sigma(A) > 0$ . Show that for all  $u \in X$ ,  $(I + \varepsilon A)^{-1}v \to v$  in X as  $\varepsilon \to 0$ .
- (iii) Let A be a sectorial operator with Re  $\sigma(A) > 0$ . Show that  $(I + A)^{-1}A^{-\beta} = A^{-\beta}(I + A)^{-1}$  for  $\beta > 0$ .
- (iv) Let A be a closed operator. Show that if the resolvent is compact at one point, then it is compact everywhere.

**Problem 2:** Let A be a sectorial operator in X with Re  $\sigma(A) > 0$ . Let  $X_1, X_2$  be the invariant spaces defined in the lecture, and  $A_1, A_2$  the restrictions of A on  $X_1, X_2$ . Prove the following facts:

- (i)  $D(A_1^{\alpha}) = X_1$ , and  $A_1^{\alpha}: X_1 \to X_1$  is bounded  $\forall \alpha > 0$ .
- (ii)  $D(A_2^{\alpha}) = D(A^{\alpha}) \cap X_2, \forall \alpha > 0.$
- (iii)  $e^{-At}X_j \subset X_j, t \ge 0.$
- (iv)  $e^{-At}|_{X_j} = e^{-A_j t}$ .

## **Problem 3:** Consider the problem

$$u_t = u_{xx}, x \in (0,1), t > 0,$$
  

$$u_x(0,t) = v(t),$$
  

$$u_x(1,t) + u(1,t) = w(t),$$
(1)

where  $\boldsymbol{v}$  and  $\boldsymbol{w}$  satisfy the differential equations

$$\dot{v} = \alpha v + \beta w, 
\dot{w} = \gamma v + \delta w + \int_0^1 u(x, t) dx,$$
(2)

 $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ . Write (1), (2) in the form

$$\frac{d}{dt}(u, v, w) = A(u, v, w).$$

Define D(A) properly. Prove that A is sectorial in  $L^2(0,1)\times\mathbb{C}^2$ . **Hint**: See problems 2 and 3(ii) in problem sheet 2.