Homework assignment

Differentialgleichungen III Problem Sheet 8

Pavel Gurevich, Eyal Ron

http://dynamics.mi.fu-berlin.de/lectures/13SS-Gurevich-Dynamics/Tutorial discussion date: Friday, June 14, 2013, at 10:00am

Problem 1: Let a > 0. Consider the problem

$$\begin{cases} u_t = u_{xx} + u - au^3, & x \in (0, \pi), t > 0, \\ u|_{x=0} = u|_{x=\pi} = 0. \end{cases}$$

- (i) Let $u(t; u_0)$ be the solution of the problem with initial condition $u|_{t=0} = u_0 \in X^{\frac{1}{2}} = \mathring{H}^1$. Show that for any $u_0 \in \mathring{H}^1$, $u(t; u_0)$ remains in a bounded region in \mathring{H}^1 for all t > 0.
- (ii) Show that 0 is stable.

You may use the intermediate results from class.

Problem 2: Consider the problem

$$\begin{cases} u_t = u_{xx} + u, & x \in (0, \pi), t > 0, \\ u|_{x=0} = u|_{x=\pi} = 0. \end{cases}$$

Show that $u \equiv 0$ is stable but not asymptotically stable in the \mathring{H}^1 topology.

Hint: Use the Fourier method since the equation is linear.

Problem 3: Consider the problem

$$\begin{cases} u_t = u_{xx} - u^3, & x \in (0, \pi), t > 0, \\ u|_{x=0} = u|_{x=\pi} = 0. \end{cases}$$

Show that the solution $u \equiv 0$ is uniformly asymptotically stable.

Problem 4: Consider the problem

$$\begin{cases}
 u_t = u_{xx} + \lambda u - u^2, & x \in (0, \pi), t > 0, \\
 u|_{x=0} = u|_{x=\pi} = 0, \\
 u|_{t=0} = u_0(x),
\end{cases}$$
(1)

where λ is a positive constant. The set $C = \{u_0 \in \mathring{H}^1 : u_0(x) \geq 0 \text{ on } 0 \leq x \leq \pi\}$ is a positively invariant set for the problem, i.e. any solution of (1) with $u_0 \in C$ satisfies $u(\cdot,t) \in C$ for all $t \geq 0$ (this can be shown, using the maximum principle.)

(i) Show that the function

$$V(\varphi) = \int_0^{\pi} \left((\varphi')^2 - \lambda \varphi^2 + \frac{2}{3} \varphi^3 \right) dx$$

is a Liapunov function on C and that for $\varphi \in C$

$$V(\varphi) \ge (1 - \lambda)||\varphi||^2 + \frac{2}{3\sqrt{\pi}}||\varphi||^3,$$

where $||\varphi|| = (\int_0^{\pi} \varphi^2 dx)^{\frac{1}{2}}$.

- (ii) Show that (1) defines a dynamical system on C.
- (iii) Assume that $\varphi \in C$ and $\dot{V}(\varphi) = 0$. Show that
 - (a) if $0 < \lambda \le 1$, then $\varphi = 0$.
 - (b) if $\lambda > 1$, then $\varphi = 0$ or φ is the unique solution φ^+ of

$$\begin{cases} \varphi'' + \lambda \varphi - \varphi^2 = 0, & x \in (0, \pi), \\ \varphi(0) = 0, \varphi(\pi) = 0, \\ \varphi(x) > 0 & \text{on } x \in (0, \pi). \end{cases}$$

(iv) Show that

- (a) if $0 < \lambda \le 1$, then $||u(\cdot,t)||_{\mathring{H}^1} \to 0$ as $t \to \infty$.
- (b) if $\lambda > 1$ and $u(x,0) \not\equiv 0$, then $||u(\cdot,t) \varphi^+||_{\mathring{H}^1} \to 0$ as $t \to \infty$.

Hint: Examine the expression

$$\frac{d}{dt} \int_0^{\pi} u(x,t) \sin x dx.$$

Remark: The problem is a simple model of feedback control of a nuclear reactor. Here u is the neutron flux, which must be nonnegative.