Theoretical questions for the exam on Differential Equations III. Summer semester 2013

<u>Sectorial operators. Analytic semigroups. Spaces X^{α} </u>

- 1. Sectorial operators and analytic semigroups.
 - a. Definitions.
 - b. **<u>Theorem</u>** on a complex-integral representation of analytic semigroups.
- 2. Negative fractional powers of sectorial operators: $A^{-\alpha}$.
 - a. Definition via the integral of a semigroup.
 - b. **<u>Property</u>**: A^{-1} = the inverse of A.
 - c. <u>**Theorem**</u>: $A^{-\alpha}$ is bounded; $A^{-\alpha} A^{-\beta} = A^{-(\alpha+\beta)}$; representation of $A^{-\alpha}$ via the integral of the resolvent.
 - d. Fourier representation of $A^{-\alpha}$ for A = "minus Laplacian in a bounded domain."
- 3. Positive fractional powers of sectorial operators: A^{α} .
 - a. Basic properties.
 - b. Fourier representation of A^{α} for A = "minus Laplacian in a bounded domain."
 - c. Estimate of $A^{\alpha}e^{-At}$.
- 4. Spaces X^{α} .
 - a. Definition.
 - b. <u>**Theorem**</u>: $||A^{\alpha}u|| \approx ||B^{\alpha}u||$.
 - c. <u>Properties</u>:
 - i. X^{α} is well defined;
 - ii. X^{α} is densely and continuously embedded into X^{β} ;
 - iii. X^{α} is compactly embedded into X^{β} if A has compact resolvent.
 - d. Fourier representation of the elements of X^{α} generated by A = "minus Laplacian in a bounded domain." Embedding of X^{α} into the space of continuous functions on a bounded domain. Proof for the case where the bounded domain is an interval.
- 5. **<u>Theorem</u>** on a spectral decomposition (without proof).

Solvability of an abstract Cauchy problem

- 6. Linear homogeneous Cauchy problem.
 - a. Definition of a (classical) solution.
 - b. Lemma on existence and uniqueness of a solution (via the semigroup).
- 7. Linear nonhomogeneous Cauchy problem.
 - a. Definition of a (classical) solution.
 - b. **<u>Lemma</u>** on a particular solution of a nonhomogeneous problem.
 - c. <u>Theorem</u> on existence and uniqueness of a classical solution. Explicit formula for the solution.
- 8. Semilinear Cauchy problem.
 - a. Assumptions on the right-hand side. Definition of a (classical) solution.
 - b. Lemma on the equivalence of the differential and integral equations.
 - c. Theorem on local existence and uniqueness of solutions.
 - d. <u>Theorem</u> on global existence and uniqueness of solutions (without proof).
 - e. <u>Theorem</u> on compactness of solutions (without proof).
 - f. Theorem on continuous dependence on initial data (without proof).
 - g. Theorem on differentiability of solutions (without proof).

Stability of equilibria

- 9. Dynamical systems (nonlinear semigroups) on complete metric spaces.
 - a. Definition.
 - b. Motivating example: dynamical systems and autonomous semilinear Cauchy problems.
- 10. Equilibria of dynamical systems. Definitions:
 - a. stable equilibrium,
 - b. unstable equilibria,
 - c. uniformly asymptotically stable equilibrium,
 - d. globally asymptotically stable equilibrium.
- 11. Lyapunov function.
 - a. Definition. **<u>Property</u>** of nonincreasing along trajectories.
 - b. <u>Theorem</u> on the uniform asymptotic stability of the zero equilibrium for a dynamical system.
- 12. **Example** $u_t = u_{xx} + u au^3$ with the Dirichlet boundary conditions.
 - a. Abstract formulation. Local existence and uniqueness of solutions.
 - b. Case a > 0: global asymptotic stability of u = 0.
 - c. Case a = 0: stability, but no asymptotic stability of u = 0.
- 13. Linear stability of equilibria of semilinear Cauchy problems.
 - a. <u>Theorem</u> on uniform asymptotic stability of equilibrium.
 - b. **<u>Theorem</u>** on asymptotics of solutions near equilibrium.
- 14. Linear instability. <u>Theorem</u> on instability of equilibrium.
- 15. Saddle-point property (local stable/unstable manifolds). <u>**Theorem**</u> on existence of stable and unstable manifolds (proof for stable manifolds).
- 16. Chafee-Infante problem. Structure of equilibria.