Homework Assignments **Dynamical Systems I** Bernold Fiedler, Bernhard Brehm http://dynamics.mi.fu-berlin.de/lectures/ due date: Thursday, April 24, 2014

Problem 1: Consider a flow $\Phi(t, x) = \Phi^t(x)$ on the real axis, $x \in \mathbb{R}$.

(i) Prove or disprove: any periodic orbit is stationary, i.e.

$$\exists \ p > 0 \ : \ \Phi(p, x_0) = x_0 \quad \Longrightarrow \quad \forall \ t \in \mathbb{R} \ : \ \Phi(t, x_0) = x_0$$

(ii) What are possible α -limit and ω -limit sets of an orbit of Φ ? (Consider bounded and unbounded orbits.)

Problem 2: Consider a flow Φ on \mathbb{R}^N , $N \ge 2$. The orbit $\Phi^t(x_0)$ of x_0 is assumed to possess arbitrarily small periods, i.e.

$$\forall \varepsilon > 0 \ \exists \ 0$$

Prove: x_0 is an equilibrium.

Problem 3: Consider the map

$$\Phi^{t}(x) := \begin{cases} \frac{1}{\frac{1}{x} - t} & \text{for } x \neq 0 \text{ and } \frac{1}{x} \neq t \\ 0 & \text{for } x = 0 \end{cases}$$

for $x \in \mathbb{C}$ and $t \in \mathbb{R} \setminus \{1/x\}$.

- (i) Check the local flow properties for Φ^t and determine the minimal time $\underline{t}(x_0)$ and the maximal time $\overline{t}(x_0)$ of existence for every $x_0 \in \mathbb{C}$.
- (ii) Which vectorfield is associated to Φ^t ?
- (iii) Determine the α and ω -limit sets $\alpha(x_0)$ and $\omega(x_0)$ for every $x_0 \in \mathbb{C}$.
- (iv) Find all bounded / unbounded / stationary / periodic / homoclinic / heteroclinic trajectories.

Problem 4: Prove that linear flows commute if and only if their linear vector fields commute. In other words, consider real $(N \times N)$ -matrices A, B and flows

$$\Phi^t := e^{At}, \qquad \Psi^t := e^{Bt} := \sum_{k=0}^{\infty} \frac{1}{k!} B^k t^k.$$

and prove that

$$AB = BA \iff \forall t \in \mathbb{R} : \Phi_t \Psi_t = \Psi_t \Phi_t.$$

Hint: Consider $\left. \frac{\mathrm{d}^2}{\mathrm{d}t^2} \right|_{t=0} (\Phi_t \Psi_t - \Psi_t \Phi_t).$