Homework Assignments **Dynamical Systems I** Bernold Fiedler, Bernhard Brehm http://dynamics.mi.fu-berlin.de/lectures/ due date: Thursday, May 15, 2014

Problem 13: Determine the heteroclinic orbit from x = -1 to x = +1 for the pendulum

$$x'' + x(1 - x^2) = 0$$

by explicit integration. Use energy and separation of variables.

Problem 14: Consider the closed, sealed-off Müggelsee with predator and prey fish of positive total masses x and y, respectively. Suppose their dynamics obeys the Volterra-Lotka equations

$$\dot{x} = x(\mu - \nu y), \dot{y} = y(-\varrho + \sigma x),$$

with positive fixed parameters $\mu, \nu, \varrho, \sigma$. Very (ε -)cautious fishing would change μ to $\tilde{\mu} = \mu - \varepsilon$ and ϱ to $\tilde{\varrho} = \varrho + \varepsilon$, with $\varepsilon > 0$. Why?

Does the time-averaged prey population

$$\overline{x} := \lim_{t \to \infty} \frac{1}{t} \int_0^t x(\tau) \,\mathrm{d}\tau$$

exist? Does \overline{x} increase or decrease, due to fishing? What happens to the total population $\overline{x+y}$?

Hint: Consider time averages of \dot{x}/x , \dot{y}/y .

Problem 15: Solve the following initial-value problems by separation of variables and determine the maximal time intervals of existence of the solutions:

- (i) $\dot{x} = x^2 e^t$, x(0) = 1,
- (ii) $\dot{x} = 1 + x^2$, x(0) = 0,
- (iii) $\dot{x} = 4 x^2$, x(0) = 0.

Problem 16: Recall coordinate transformations for vectorfields and flows. Let Φ^t be the flow of the vectorfield $\dot{x} = f(x)$ and let $h : \mathbb{R}^N \to \mathbb{R}^N$ be a diffeomorphism. We use the shorthand h_*f for the vectorfield associated to the transformed ("conjugated") flow $\tilde{\Phi}^t(x) = h(\Phi^t(h^{-1}(x)))$.

- (i) Derive a formula for h_*f . Compare your result to the formula given in the lecture.
- (ii) Prove that for diffeomorphisms h, \tilde{h} we have

$$(h \circ \tilde{h})_* f = h_*(\tilde{h}_* f).$$

(iii) Prove that $(\Phi^t)_* f = f$ for all $t \in \mathbb{R}$.