Homework Assignments **Dynamical Systems I** Bernold Fiedler http://dynamics.mi.fu-berlin.de/lectures/ due date: Thursday, June 19, 2014

Problem 33: Let $A = (a_{ij})_{1 \le i,j \le n}$ be a real $n \times n$ -matrix. Prove: The coefficients of the matrix $\exp(At)$ are non-negative for all $t \ge 0$ if, and only if, $a_{ij} \ge 0$ for all $i \ne j$. *Hint:* It suffices to consider the case $a_{ij} \ge 0$ for all i, j. (Why?)

Problem 34: We want to understand the damped linear pendulum

$$\ddot{x} + 2\,\nu\dot{x} + \omega_0^2 x = 0$$

with parameters $\nu, \omega_0 > 0$ and initial conditions $x(0) = 0, \dot{x}(0) = 1$.

- (i) Determine the explicit solution, for all ν, ω_0 . Sketch (yes, by hand!) phase portraits and a diagram of the (ν, ω_0) -plane indicating different qualitative behavior.
- (ii) How does the phase portrait change at the boundary between different zones in the (ν, ω_0) -plane, for instance due to a change of the damping ν ? How do you reconcile the discontinuities in the phase portraits of the Jordan normal form with differentiable dependence of the flow on the parameters ν, ω_0 ?

Problem 35: How many decimal digits does the 1.000.000.001-st Fibonacci number have, i.e. $x_n = x_{n-1} + x_{n-2}$ with $x_0 = 0$ and $x_1 = 1$?

Problem 36: [LISSAJOUS figures] Let A be a real, symmetric, positive definite 2×2 -matrix. Consider the Hamilton function $H(x, \dot{x}) = \frac{1}{2}(\dot{x}^{T}\dot{x} + x^{T}Ax)$ and the associated Hamiltonian system

$$(*) \qquad \ddot{x} + Ax = 0.$$

(i) Transform (*) into a system of decoupled pendulum equations (ω_1 , ω_2 real):

$$(**) \qquad \begin{cases} \qquad \ddot{y}_1 + \omega_1^2 y_1 &= 0, \\ \qquad \ddot{y}_2 + \omega_2^2 y_2 &= 0, \end{cases}$$

(ii) Sketch the solution $(x_1(t), x_2(t))$ of (*) for

$$A = \left(\begin{array}{cc} 5 & -4 \\ -4 & 5 \end{array}\right)$$

with initial conditions $x_1 = x_2 = 1$; $\dot{x}_1 = \dot{x}_2 = 0$.

(iii) Try to describe the solutions for other ratios ω_1/ω_2 , in words.