Homework Assignments

Dynamical Systems I

Bernold Fiedler

http://dynamics.mi.fu-berlin.de/lectures/ due date: Thursday, June 26, 2014

Problem 37: Let Φ^t be a flow on a metric space X. Let x_0 be "stable", i.e.

$$\forall \, \varepsilon > 0 \quad \exists \, \delta > 0 \quad \forall \, x \in X \quad \Big(\, |x - x_0| < \delta \quad \Longrightarrow \quad \forall \, t \ge 0 \quad \big| \Phi^t(x) - \Phi^t(x_0) \big| < \varepsilon \, \Big)$$

Prove or disprove: x_0 is an equilibrium of the flow.

Problem 38: Consider the sequence

$$1, 1, 2, 3, 5, 8, 13, \ldots,$$

i.e.

$$x_n = \frac{1}{2^n \sqrt{5}} \left(\left(1 + \sqrt{5} \right)^n - \left(1 - \sqrt{5} \right)^n \right).$$

- (i) Give an interpretation of this sequence via iterations of a suitable linear map $A: \mathbb{R}^2 \to \mathbb{R}^2$. Determine the linear map and prove your claim.
- (ii) For which nonzero initial conditions $(\tilde{x}_1, \tilde{x}_2) \in \mathbb{Z}^2$ to the above iteration does the quotient

$$r_n = \tilde{x}_{n+1}/\tilde{x}_n$$

not converge to the "golden ratio" $g = \frac{1}{2}(1 + \sqrt{5})$?

Problem 39: Let f be a differentiable vector field on \mathbb{R}^3 . Show that a trajectory coincides with its ω -limit set, if the trajectory is an equilibrium or a periodic orbit. 8 extra points: Show the converse implication.

Problem 40: Let all eigenvalues of the linearization of an ODE at an equilibrium x = 0 possess strictly positive real part. Show that x = 0 is a repeller, preferably without using the Grobman-Hartman theorem.

Here we call x = 0 a repeller, if there exist $0 < \delta < \varepsilon$ such that for every initial condition x_0 with $0 < |x_0| < \delta$ there exists a positive time t with $|x(t)| = \varepsilon$.

1