Übungen zur Vorlesung

Analysis III

Stefan Liebscher

http://dynamics.mi.fu-berlin.de/lectures/

Abgabe: Donnerstag, 13.11.2014, 10:00

Aufgabe 13: Plotte z.B. mit Mathematica für die Funktion $H: \mathbb{R}^3 \to \mathbb{R}$

$$H(x, y, z) = y + z^3 - xz$$

aus verschiedenen Perspektiven die Niveaumenge $H^{-1}(0)$. Bestimme die Menge $C \subset H^{-1}(0)$ der Punkte, in denen sich $H^{-1}(0)$ nicht lokal als Fläche in der Form z = h(x, y) schreiben lässt. Projiziere C in die Koordinatenebenen.

Aufgabe 14: Sei $\Omega \subset \mathbb{R}^N$ eine offene Menge und $f:\Omega \to \mathbb{R}$ stetig. Die Funktion f heißt lokal konvex in $\tilde{\Omega} \subseteq \Omega$, wenn zu jedem $x \in \tilde{\Omega}$ eine offene konvexe Umgebung U, $x \in U \subset \tilde{\Omega}$, existiert, so dass $f|_U$ konvex ist.

- (i) Sei Ω konvex. Zeige, dass f genau dann konvex in Ω ist, wenn f lokal konvex in Ω ist.
- (ii) Sei Ω konvex, $N \geq 2$, und $\tilde{\Omega} = \Omega \setminus \{p_1, ..., p_m\}$ entstehe durch Entfernung endlich vieler Ausnahmepunkte. Zeige, dass lokale Konvexität von f in $\tilde{\Omega}$ ausreicht, um Konvexität in ganz Ω zu folgern. (Beachte die Stetigkeit von f.)

Freiwillige Zusätze: Was kannst Du über strikte Konvexität sagen? Was passiert für N=1?

Aufgabe 15: Es seien X, Y Banachräume und $U \subset X$ offen. Weiter gelte $[x_0, x_0 + h] = \{x_0 + \tau h \mid 0 \le \tau \le 1\} \subset U$.

(i) Es sei $f \in C^{n+1}(U, Y)$, $Y = \mathbb{R}$. Zeige:

$$f(x_0 + h) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(x_0) h^{(k)} + \frac{1}{(n+1)!} f^{(n+1)}(x_0 + \delta h) h^{(n+1)}$$

mit geeignetem $0 < \delta < 1$ (Lagrange-Form des Restgliedes).

(ii) Es sei $f \in C^n(U, Y)$. (Nur n mal differenzierbar!) Zeige:

$$f(x_0 + h) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(x_0) h^{(k)} + o(|h|^n).$$

Aufgabe 16: Es sei $U \subseteq \mathbb{R}^m$ offen. Auf dem Funktionenraum $C^{\infty}(U, \mathbb{R}^m)$ der unendlich oft stetig differenzierbaren Abbildungen ist die Lie-Klammer definiert durch

$$[f, g](x) = Df(x) \cdot g(x) - Dg(x) \cdot f(x).$$

Zeige:

- (i) $[\,\cdot\,,\,\cdot\,]:\,C^\infty(U,\mathbb{R}^m)\times C^\infty(U,\mathbb{R}^m)\to C^\infty(U,\mathbb{R}^m)$ ist bilinear und antisymmetrisch.
- (ii) Für alle $f,g,h\in C^\infty(U,\mathbb{R}^m)$ gilt die Jacobi-Identität:

$$[[f,g],h] + [[g,h],f] + [[h,f],g] = 0.$$