4. Homework Assignment

Dynamical Systems III

Juliette Hell

http://dynamics.mi.fu-berlin.de/lectures/due date: Wednesday, 20.05.2015

Problem 1: Consider the differential equation

$$\dot{x} = -x(\mu^2 + x^2), \quad x \in \mathbb{R}, \ \mu \in \mathbb{R}.$$

- (i) Determine the equilibria and their stability in dependence of μ . Which value of μ could yield a bifurcation at the origin? What happens?
- (ii) Solve the equation explicitly by hands. Describe the interval of existence and the asymptotics of the maximal solution in dependence of the initial conditions.

Problem 2: Let $A(\alpha)$, $\alpha \in \mathbb{R}$ denote a smooth family of $n \times n$ matrices of the form

$$A(\alpha) := \begin{pmatrix} \lambda(\alpha) & -\omega(\alpha) & 0\\ \omega(\alpha) & \lambda(\alpha) & 0\\ \hline 0 & 0 & B(\alpha) \end{pmatrix}$$

Assume, that $\lambda(\alpha) \pm i\omega(\alpha)$ are simple eigenvalues. Let $p(\alpha)$ be the left eigenvector of $A(\alpha)$ with eigenvalue $\lambda(\alpha) - i\omega(\alpha)$, i.e.

$$A^{t}(\alpha)p(\alpha) = [\lambda(\alpha) - i\omega(\alpha)] p(\alpha).$$

Furthermore denote by $q(\alpha)$ the right eigenvector of $A(\alpha)$ with eigenvalue $\lambda(\alpha) + i\omega(\alpha)$. You may assume, that $p(\alpha), q(\alpha)$ are smooth with respect to α .

- (i) Check, that $\langle p(\alpha), q(\alpha) \rangle \neq 0$, hence w.l.o.g. $\langle p(\alpha), q(\alpha) \rangle = 1$.
- (ii) Prove, that $\lambda'(0) = \Re(\langle p(0), A'(0)p(0)\rangle)$.

Hint: Differentiate a suitable scalar product with respect to α . Remark: The inner product of \mathbb{C}^n is defined by

$$\langle p, q \rangle := \sum_{i=1}^{n} p_i \bar{q}_i.$$

1