6. Homework Assignment
Dynamical Systems III
Juliette Hell
http://dynamics.mi.fu-berlin.de/lectures/
due date: Wednesday, 03.06.2015

Problem 1: Find the bifurcation points of the following differential equations with parameter $\lambda \in \mathbb{R}$. Determine the type of bifurcation and draw the bifurcation diagram close to the bifurcation.
(i) $\dot{x}=\lambda x-\log (1+x)$.
(ii) $\dot{x}=-x+\lambda \tanh x$.
(iii) $\dot{x}=\lambda+x-\log (1+x)$.

Problem 2: Consider the differential equation

$$
\dot{x}=\lambda \log x+x-1 .
$$

(i) Find the bifurcation point.
(ii) Determine the type of bifurcation and draw the bifurcation diagram.
(iii) Find a coordinate change $(x, \lambda) \mapsto(y, \mu)$ under which the equation for y has the form

$$
\dot{y}=P_{k}(\mu, y)+O\left(y^{k+1}\right),
$$

where P_{k} contains all terms of the normal form for the corresponding bifurcation up to order k.

