Homework assignment Infinite-Dimensional Dynamical Systems Bernold Fiedler, Hannes Stuke http://dynamics.mi.fu-berlin.de/lectures/ Due Tuesday, May 10, 2016, 10:15

Problem 5: Consider the flow ϕ of the pendulum equation

 $\ddot{x} + \nu \dot{x} + \sin x = 0, \qquad \nu \in \mathbb{R},$

for the two cases $x \in S^1 := \mathbb{R}/2\pi$ and $x \in \mathbb{R}$.

- (i) For which real ν is ϕ dissipative?
- (ii) Depending on ν , what is the maximal compact and invariant set of ϕ ?

Problem 6: Does there exist a strongly continuous semigroup T(t) with nonequilibrium solutions such that all solutions are stationary after time t = 1, that is T(t) = T(1) for all $t \ge 1$? Does your example possess a Lyapunov function?

Problem 7: Let T(t) be a compact dissipative semigroup. Show that the α - limit set $\alpha(x_0)$ of any x_0 , with respect to a bounded prehistory $\varphi(t)$ of x_0 , is nonempty, compact, invariant, and connected.

Problem 8: For fixed $0 < \beta \leq \frac{1}{3}$, construct the closed Cantor set *C* starting from the closed unit interval: at stage $n \geq 1$, a centered open interval is removed, from each remaining interval, to generate two new remaining closed intervals of length β^n from it. The Cantor set is the limit of this process.

Determine the topological dimension, the Hausdorff dimension, and the capacity of C. What happens for $\beta > \frac{1}{3}$?