Homework assignment

Infinite-Dimensional Dynamical Systems

Bernold Fiedler, Hannes Stuke http://dynamics.mi.fu-berlin.de/lectures/ Due Tuesday, May 24, 2016, 10:15

Problem 13: Let $T(t, \alpha)$, $0 \le \alpha < \alpha_0$ be a family of parameter dependent semigroups on X. Assume, that $T(t, \alpha)$ is locally uniformly continuous in α , that is for any fixed t > 0 and any bounded subset $M \subset X$

$$\lim_{\alpha \to 0} \sup_{x \in M} \|T(t, \alpha)x - T(t, 0)x\| = 0.$$

Furthermore assume that all $T(t,\alpha)$ are point dissipative with the same attracting set B. Prove or refute that the global attractors \mathcal{A}_{α} of the semigroups satisfy

- (i) $\lim_{\alpha \to 0} \operatorname{dist}(\mathcal{A}_{\alpha}, \mathcal{A}_{0}) = 0$,
- (ii) $\lim_{\alpha\to 0} \operatorname{dist}(\mathcal{A}_0, \mathcal{A}_\alpha) = 0.$

Note: $\operatorname{dist}(M, \tilde{M}) := \sup_{x \in M} \inf_{u \in \tilde{M}} \|x - y\|$ is asymmetric.

Problem 14: Consider the map $F: c_0 \to c_0$,

$$(F(x))_n = x_n^2.$$

Prove, that DF(x) is compact, but F is not compact. Definition: The space c_0 is defined as follows

$$c_0 := \left\{ (x_n)_{n \in \mathbb{N}} : x_n \in \mathbb{R}, \ \lim_{n \to \infty} x_n = 0 \right\},\,$$

with norm $\|\cdot\|_{\infty}$.

Problem 15: Consider a dissipative C^2 - flow on \mathbb{R}^N with differential equation

$$\dot{x} = f(x), \qquad x(0) = x_0 \in \mathbb{R}^N.$$

and global attractor \mathcal{A} . Assume that,

rank
$$Df(\tilde{x}) < k < N$$
, $\forall \tilde{x} \in \mathcal{A}$.

Show that the Hausdorff dimension of \mathcal{A} satisfies $\dim_H \mathcal{A} \leq k$.

Problem 16: Consider the Levin-Nohel nuclear reactor equation

$$\dot{x}(t) = -\int_{-1}^{0} a(s)g(x(t+s))ds,$$
(1)

for $x \in C^0([-1,0])$. Let a(s) be positive, continuous and g continuously differentiable with $g(x) \geq -C_g$ and xg(x) > 0 for $x \neq 0$. Show that the semiflow of (1) is compact, dissipative and the global attractor has finite box-counting dimension.