Homework assignment Infinite-Dimensional Dynamical Systems Bernold Fiedler, Hannes Stuke http://dynamics.mi.fu-berlin.de/lectures/ Due Tuesday, May 31, 2016, 10:15

Problem 17: Consider smooth solutions u = u(t, x) of the semilinear heat equation $u_t = u_{xx} + f(x, u)$ on the unit interval $x \in \Omega := (0, 1)$ with Dirichlet boundary conditions. Let $F_u = f$. Show, that the functional

$$V(u) := \int_0^1 \left(\frac{1}{2}|u_x|^2 - F(x,u)\right) dx$$

is a Lyapunov function.

Problem 18: For $\varphi \in X := C^0([-1,0], \mathbb{R}^N)$ consider the delay equation

$$\dot{x}(t) = f(x_t), \ x_0 = \varphi \tag{1}$$

with notation $x_t(\vartheta) := x(t+\vartheta), -1 \leq \vartheta \leq 0$. Assume $f: X \to \mathbb{R}^N$ is locally Lipschitz and satisfies $|f(\varphi)| \leq C(1+||\varphi||_{\infty})$ for some constant C > 0 and all $\varphi \in X$. Show that solutions of (1) exist globally.

Problem 19: Calculate the topological, box-counting (fractal, capacity) and Hausdorff dimension of

- (i) $M := \{\frac{1}{n}, n \in \mathbb{N}\},\$
- (ii) the following Cantor set C_{α} with parameter $0 < \alpha < 1$: Start with the unit interval. From each remaining interval of length L remove a centered, open interval of length αL to obtain two new intervals. Continue recursively. The remaining set of this countable process is called C_{α} .

Problem 20: Consider the linear delay equation

$$\dot{x}(t) = -x(t-r),$$

on $C^0([-r, 0], \mathbb{R})$. Prove or disprove, that the semiflow of the equation is dissipative for all r > 0.