Homework assignment Infinite-Dimensional Dynamical Systems Bernold Fiedler, Hannes Stuke http://dynamics.mi.fu-berlin.de/lectures/ Due Tuesday, June 14, 2016, 10:15

Problem 25: Let $M \subset X := C([-1,0], \mathbb{R})$ be a finite-dimensional C^2 - submanifold. Assume that M is positively invariant under the local semiflow T(t) to $\dot{x}(t) = f(x_t)$. Here $x_t(\vartheta) := x(t + \vartheta)$, for $-1 \le \vartheta \le 0$. Assume that the vector field f induces a locally Lipschitz vector field on M. Show, that without any other knowledge of f itself, f is already determined by M.

In other words, show, that $M \subset C^1([-1,0],\mathbb{R})$ and that \dot{x}_t is already determined by $x_t \in M$ alone. Then conclude the claim.

Problem 26: Let A be a self-adjoint operator (look up the definition!) with dense domain D in a Hilbert space X. Let $\|\cdot\|$ denote the scalar product norm on X. Show that the set of $x \in D$ with $||Ax|| \leq 1$ is closed and convex in X.

Problem 27: Consider *N*-dimensional smooth flows which depend smoothly on a parameter α . Assume a fixed attracting ball, for all α , so that the global attractors \mathcal{A}_{α} exist.

Prove or disprove that the dependence of the "dimension" of \mathcal{A}_{α} on α is

- (i) upper semicontinuous;
- (ii) lower semicontinuous.

Problem 28: In the setting of problem 27, prove or disprove that the dependence of \mathcal{A}_{α} , as a set, on α is

- (i) upper semicontinuous;
- (ii) lower semicontinuous.

Here upper semicontinuity means that any open neighborhood of A_0 contains A_{α} , for sufficiently small $|\alpha|$. Lower semicontinuity means that the ε -neighborhood of A_{α} contains A_0 , for sufficiently small $|\alpha|$.