Characterization of 1-dimensional Manifolds

Martin Väth

Theorem. Every separable metrizable 1-dimensional connected C^n manifold (with or without boundary) is C^n -diffeomorphic to either the circle $S^1 := S_1(0)$ in \mathbb{R}^2 or to an interval.

The separability is required to exclude pathological manifolds like the "long line" (uncountably many intervals of length 1 stuck together). Note that a one-dimensional *manifold with boundary* is defined analogouosly to a manifold without boundary, only that for the chart(s) onto the boundary point, the preimage of the manifold only has to be an half-open interval (not an open interval).

A proof can be found in [1], although some parts of that proof are not given in much a detail. For compact manifolds the proof can be slightly simplified (though the main ideas are the same).

Here is a more verbose proof of this special case by myself (based on the proof from [1]) which appeared as [2, Theorem 9.15].

Theorem. Every compact connected 1-dimensional C^1 manifold X (with or without boundary) is diffeomorphic to either the circle $S^1 := S_1(0)$ in \mathbb{R}^2 or to [0, 1].

Proof. By shrinking the charts if necessary, we can assume that X is covered by open sets, each of which is diffeomorphic to an interval. By the compactness, we have $X = U_1 \cup \cdots \cup U_n$ such that each U_k is diffeomorphic to an interval. Now if X is not diffeomorphic to S^1 , we show inductively that there are pairwise different k_1, \ldots, k_j and diffeomorphisms f_j of an interval I_j onto $X_j := U_{k_1} \cup \cdots \cup U_{k_j}$. Then we are done for j = n.

For the induction start, we put $k_1 := 1$. For the induction step, note that the connectedness of X implies that there is some k_{j+1} different from k_1, \ldots, k_j such that $U := U_{k_{j+1}}$ intersects X_j . Let f be a diffeomorphism of an interval I onto U. We put now $M := f_i^{-1}(U \cap U_j)$ and consider

$$\Gamma := \operatorname{graph} f^{-1} \circ f_j|_M = \{(t,s) \in I_j \times I : f(s) = f_j(t)\}$$

as a subset of $I_j \times I$. Note that $g = f^{-1} \circ f_j|_M$ is a diffeomorphism (of M onto $f^{-1}(U \cap U_j)$), in particular Γ is the graph of the one-to-one C^1 function g with nonzero derivative. Moreover, if $(t, s) \in \Gamma$ belongs to the interior of $I_j \times I$ then Γ extends to the left and right of t, that is, Γ cannot end in the interior of the rectangle $I_j \times I$. Since, by the injectivity of g, Γ intersects each side of the rectangle at most once, it follows that there are at most two components of Γ , each starting and ending at different sides of the rectangle. If there is only one component, M is an interval. In this case, it is clear that we can (after reparametrizing f) "concatenate" f_j and f to a homeomorphism of $X_j \cup U$ to an interval. Thus, assume Γ has two components, each connecting two sides of the rectangle. By the injectivity of g, these must be "neighboring" sides, M is the union of two disjoint open in M intervals M_1 and M_2 , and by the injectivity of g the intervals $g(M_1)$ and $g(M_2)$ cannot intersect. Filling the "gaps" between the intervals M_1 and M_2 using f_j and between $g(M_1)$ and $g(M_2)$ using f, we see that there is a diffeomorphism h of S^1 onto $X_j \cup U$. Since $h(S^1) = X_j \cup U$ is open and compact and thus closed in X, the connectedness of X implies $X = h(S^1)$. Hence, X is diffeomorphic to S^1 which we had excluded for the induction.

References

- [1] Milnor, J. W., *Topology from the differential viewpoint*, University Press of Virginia, Charlottesville, 1965.
- [2] Väth, M., *Topological analysis. From the basics to the triple degree for nonlinear Fredholm inclusions*, de Gruyter, Berlin, New York, 2012.